67 resultados para technical market indicators


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To protect and restore lake ecosystems under threats posed by the increasing human population, information on their ecological quality is needed. Lake sediments provide a data rich archive that allows identification of various biological components present prior to anthropogenic alterations as well as a constant record of changes. By providing a longer dimension of time than any ongoing monitoring programme, palaeolimnological methods can help in understanding natural variability and long-term ecological changes in lakes. As zooplankton have a central role in the lake food web, their remains can potentially provide versatile information on past trophic structure. However, various taphonomic processes operating in the lakes still raise questions concerning how subfossil assemblages reflect living communities. This thesis work aimed at improving the use of sedimentary zooplankton remains in the reconstruction of past zooplankton communities and the trophic structure in lakes. To quantify interspecific differences in the accumulation of remains, the subfossils of nine pelagic zooplankton taxa in annually laminated sediments were compared with monitoring results for live zooplankton in Lake Vesijärvi. This lake has a known history of eutrophication and recovery, which resulted from reduced external loading and effective fishing of plankti-benthivorous fish. The response of zooplankton assemblages to these known changes was resolved using annually laminated sediments. The generality of the responses observed in Lake Vesijärvi were further tested with a set of 31 lakes in Southern Finland, relating subfossils in surface sediments to contemporary water quality and fish density, as well as to lake morphometry. The results demonstrated differential preservation and retention of cladoceran species in the sediment. Daphnia, Diaphanosoma and Ceriodaphnia were clearly underrepresented in the sediment samples in comparison to well-preserved Bosmina species, Chydorus, Limnosida and Leptodora. For well-preserved species, the annual net accumulation rate was similar to or above the expected values, reflecting effective sediment focusing and accumulation in the deepest part of the lake. The decreased fish density and improved water quality led to subtle changes in zooplankton community composition. The abundance of Diaphanosoma and Limnosida increased after the reduction in fish density, while Ceriodaphnia and rotifers decreased. The most sensitive indicator of fish density was the mean size of Daphnia ephippia and Bosmina (E.) crassicornis ephippia and carapaces. The concentration of plant-associated species increased, reflecting expanding littoral vegetation along with increasing transparency. Several of the patterns observed in Lake Vesijärvi could also be found within the set of 31 lakes. According to this thesis work, the most useful cladoceran-based indices for nutrient status and planktivorous fish density in Finnish lakes were the relative abundances of certain pelagic taxa, and the mean size of Bosmina spp. carapaces, especially those of Bosmina (E.) cf. coregoni. The abundance of plant-associated species reflected the potential area for aquatic plants. Lake morphometry and sediment organic content, however, explained a relatively high proportion of the variance in the species data, and more studies are needed to quantify lake-specific differences in the accumulation and preservation of remains. Commonly occurring multicollinearity between environmental variables obstructs the cladoceran-based reconstruction of single environmental variables. As taphonomic factors and several direct and indirect structuring forces in lake ecosystems simultaneously affect zooplankton, the subfossil assemblages should be studied in a holistic way before making final conclusions about the trophic structure and the change in lake ecological quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil is an unrenewable natural resource under increasing anthropogenic pressure. One of the main threats to soils, compromising their ability to provide us with the goods and ecosystem services we expect, is pollution. Oil hydrocarbons are the most common soil contaminants, and they disturb not just the biota but also the physicochemical properties of soils. Indigenous soil micro-organisms respond rapidly to changes in the soil ecosystem, and are chronically in direct contact with the hydrophobic pollutants on the soil surfaces. Soil microbial variables could thus serve as an intrinsically relevant indicator of soil quality, to be used in the ecological risk assessment of contaminated and remediated soils. Two contrasting studies were designed to investigate soil microbial ecological responses to hydrocarbons, together with parallel changes in soil physicochemical and ecotoxicological properties. The aim was to identify quantitative or qualitative microbiological variables that would be practicable and broadly applicable for the assessment of the quality and restoration of oil-polluted soil. Soil bacteria commonly react on hydrocarbons as a beneficial substrate, which lead to a positive response in the classical microbiological soil quality indicators; negative impacts were accurately reflected only after severe contamination. Hydrocarbon contaminants become less bioavailable due to weathering processes, and their potentially toxic effects decrease faster than the total concentration. Indigenous hydrocarbon degrader bacteria, naturally present in any terrestrial environment, use specific mechanisms to improve access to the hydrocarbon molecules adsorbed on soil surfaces. Thus when contaminants are unavailable even to the specialised degraders, they should pose no hazard to other biota either. Change in the ratio of hydrocarbon degrader numbers to total microbes was detected to predictably indicate pollutant effects and bioavailability. Also bacterial diversity, a qualitative community characteristic, decreased as a response to hydrocarbons. Stabilisation of community evenness, and community structure that reflected clean reference soil, indicated community recovery. If long-term temporal monitoring is difficult and appropriate clean reference soil unavailable, such comparison could possibly be based on DNA-based community analysis, reflecting past+present, and RNA-based community analysis, showing exclusively present conditions. Microbial ecological indicators cannot replace chemical oil analyses, but they are theoretically relevant and operationally practicable additional tools for ecological risk assessment. As such, they can guide ecologically informed and sustainable ecosophisticated management of oil-contaminated lands.