92 resultados para Embryology, Human
Resumo:
Currently, there are nine known human herpesviruses and these viruses appear to have been a very common companion of humans throughout the millenia. Of human herpesviruses, herpes simplex viruses 1 and 2 (HSV-1, HSV-2), causative agents of herpes labialis and genital herpes, and varicella-zoster virus (VZV), causative agent of chicken pox, are also common causes of central nervous system (CNS) infections. In addition, human cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), all members of the herpesvirus family, can also be associated with encephalitis and meningitis. Accurate diagnostics and fast treatment are essential for patient recovery in CNS infections and therefore sensitive and effective diagnostic methods are needed. The aim of this thesis was to develop new potential detection methods for diagnosing of human herpesvirus infections, especially in immunocompetent patients, using the microarray technique. Therefore, methods based on microarrays were developed for simultaneous detection of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6A, HHV-6B, and HHV-7 nucleic acids, and for HSV-1, HSV-2, VZV, and CMV antibodies from various clinical samples. The microarray methods developed showed potential for efficiently and accurately detecting human herpesvirus DNAs, especially in CNS infections, and for simultaneous detection of DNAs or antibodies for multiple different human herpesviruses from clinical samples. In fact, the microarray method revealed several previously unrecognized co-infections. The microarray methods developed were sensitive and provided rapid detection of human herpesvirus DNA, and therefore the method could be applied to routine diagnostics. The microarrays might also be considered as an economical tool for diagnosing human herpesvirus infections.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.
Resumo:
Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.
Resumo:
New blood cells are continuously provided by self-renewing multipotent hematopoietic stem cells (HSC). The capacity of HSCs to regenerate the hematopoietic system is utilized in the treatment of patients with hematological malignancies. HSCs can be enriched using an antibody-based recognition of CD34 or CD133 glycoproteins on the cell surface. The CD133+ and CD34+ cells may have partly different roles in hematopoiesis. Furthermore, each cell has a glycome typical for that cell type. Knowledge of HSC glycobiology can be used to design therapeutic cells with improved cell proliferation or homing properties. The present studies characterize the global gene expression profile of human cord blood-derived CD133+ and CD34+ cells, and demonstrate the differences between CD133+ and CD34+ cell populations that may have an impact in transplantation when CD133+ and CD34+ selected cells are used. In addition, these studies unravel the glycome profile of primitive hematopoietic cells and reveal the transcriptional regulation of N-glycan biosynthesis in CD133+ and CD34+ cells. The gene expression profile of CD133+ cells represents 690 differentially expressed transcripts between CD133+ cells and CD133- cells. CD34+ cells have 620 transcripts differentially expressed when compared to CD34- cells. The integrated CD133+/CD34+ cell gene expression profiles proffer novel transcripts to specify HSCs. Furthermore, the differences between the gene expression profiles of CD133+ and CD34+ cells indicate differences in the transcriptional regulation of CD133+ and CD34+ cells. CD133+ cells express a lower number of hematopoietic lineage differentiation marker genes than CD34+ cells. The expression profiles suggest a more primitive nature of CD133+ cells. Moreover, CD133+ cells have characteristic glycome that differ from the glycome of CD133- cells. High mannose-type and biantennary complex-type N-glycans are enriched in CD133+ cells. N-glycosylation-related gene expression pattern of CD133+ cells identify the key genes regulating the CD133+ cell-specific glycosylation including the overexpression of MGAT2 and underexpression of MGAT4. The putative role of MAN1C1 in the increase of unprocessed high mannose-type N-glycans in CD133+ cells is also discussed. These studies provide new information on the characteristics of HSCs. Improved understanding of HSC biology can be used to design therapeutic cells with improved cell proliferation and homing properties. As a result, HSC engineering could further their clinical use.
Resumo:
Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.
Resumo:
Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.
Resumo:
Cancer is a leading cause of death worldwide and the total number of cancer cases continues to increase. Many cancers, for example sinonasal cancer and lung cancer, have clear external risk factors and so are potentially preventable. The occurrence of sinonasal cancer is strongly associated with wood dust exposure and the main risk factor for lung cancer is tobacco smoking. Although the molecular mechanisms involved in lung carcinogenesis have been widely studied, very little is known about the molecular changes leading to sinonasal cancer. In this work, mutations in the tumour suppressor TP53 gene in cases of sinonasal cancer and lung cancer and the associations of these mutations with exposure factors were studied. In addition, another important mechanism in many cancers, inflammation, was explored by analyzing the expression of the inflammation related enzyme, COX-2, in sinonasal cancer. The results demonstrate that TP53 mutations are frequent in sinonasal cancer and lung cancer and in both cancers they are associated with exposure. In sinonasal cancer, the occurrence of TP53 mutation significantly increased in relation to long duration and high level of exposure to wood dust. Smoking was not associated with the overall occurrence of the TP53 mutation in sinonasal cancer, but was associated with multiple TP53 mutations. Furthermore, inflammation appears to play a part in sinonasal carcinogenesis as indicated by our results showing that the expression of COX-2 was associated with adenocarcinoma type of tumours, wood dust exposure and non-smoking. In lung cancer, we detected statistically significant associations between TP53 mutations and duration of smoking, gender and histology. We also found that patients with a tumour carrying a G to T transversion, a mutation commonly found in association with tobacco smoking, had a high level of smoking-related bulky DNA adducts in their non-tumorous lung tissue. Altogether, the information on molecular changes in exposure induced cancers adds to the observations from epidemiological studies and helps to understand the role and impact of different etiological factors, which in turn can be beneficial for risk assessment and prevention.