84 resultados para 4n-removal cross section
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We report on the first search for top-quark production via flavor-changing neutral-current (FCNC) interactions in the non-standard-model process u(c)+g -> t using ppbar collision data collected by the CDF II detector. The data set corresponds to an integrated luminosity of 2.2/fb. The candidate events feature the signature of semileptonic top-quark decays and are classified as signal-like or background-like by an artificial neural network trained on simulated events. The observed discriminant distribution is in good agreement with the one predicted by the standard model and provides no evidence for FCNC top-quark production, resulting in a Bayesian upper limit on the production cross section sigma (u(c)+g -> t) u+g) c+g)
Resumo:
We performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 $\rm{fb}^{-1}$ of $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV, collected with the CDF II detector using a high transverse-momentum ($p_T$) muon trigger. The search used time-of-flight to isolate slowly moving, high-$p_T$ particles. One event passed our selection cuts with an expected background of $1.9 \pm 0.2$ events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/$c^2$ at 95% C.L.
Resumo:
We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected in {$p\bar p$} collisions at {$\sqrt{s}$ = 1.96 TeV} by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on $\sigma \cdot BR (p \bar{p} \to X \to \mu \bar{\mu})$, where $X$ is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, $Z'$ bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.
Resumo:
We report on a search for the supersymmetric partner of the bottom quark produced from gluino decays in data from 2.5 fb-1 of integrated luminosity collected by the Collider Detector at Fermilab at sqrt(s)=1.96 TeV. Candidate events are selected requiring two or more jets and large missing transverse energy. At least two of the jets are required to be tagged as originating from a b quark to enhance the sensitivity. The results are in good agreement with the prediction of the standard model processes, giving no evidence for gluino decay to sbottom quarks. This result constrains the gluino-pair-production cross section to be less than 40fb at 95% credibility level for a gluino mass of 350 GeV.
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.
Resumo:
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.
Resumo:
We report a search for narrow resonances, produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/c^2. The data, collected with the CDF~II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb$^{-1}$. We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the $\Upsilon(1{\rm S})$ meson.
Resumo:
We present new limits on resonant tb production in proton-antiproton collisions at 1.96 TeV, using 1.9 fb^-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W'->tb. We set a new limit on a right-handed W' with standard model-like coupling, excluding any mass below 800 GeV at 95% C.L. The cross-section for any narrow, resonant tb production between 750 and 950 GeV is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W' coupling strength versus W' mass over the range 300 to 950 GeV.
Resumo:
We present a search for the standard model Higgs boson produced with a Z boson in 4.1 fb^-1 of data collected with the CDF II detector at the Tevatron. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electrons or muons, we set 95% credibility level upper limits on the ZH production cross section times the H -> b bbar branching ratio. Improved analysis methods enhance signal sensitivity by 20% relative to previous searches beyond the gain due to the larger data sample. At a Higgs boson mass of 115 GeV/c^2 we set a limit of 5.9 times the standard model value.
Resumo:
We present results of a signature-based search for new physics using a dijet plus missing transverse energy data sample collected in 2 fb-1 of p-pbar collisions at sqrt(s) = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. We observe no significant event excess with respect to the standard model prediction and extract a 95% C.L. upper limit on the cross section times acceptance for a potential contribution from a non-standard model process. Based on this limit the mass of a first or second generation scalar leptoquark is constrained to be above 187 GeV/c^2.
Resumo:
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb-1 of integrated luminosity of pp̅ collisions at √s=1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516±239(stat)±144(syst) diboson candidate events and measure a cross section σ(pp̅ →VV+X) of 18.0±2.8(stat)±2.4(syst)±1.1(lumi) pb, in agreement with the expectations of the standard model.
Resumo:
In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.
Resumo:
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W,Z) where one boson decays to a dijet final state . The data correspond to 3.5 inverse femtobarns of integrated luminosity of ppbar collisions at sqrt(s)=1.96 TeV collected by the CDFII detector at the Fermilab Tevatron. We observe 1516+/-239(stat)+/-144(syst) diboson candidate events and measure a cross section sigma(ppbar->VV+X) of 18.0+/-2.8(stat)+/-2.4(syst)+/-1.1(lumi) pb, in agreement with the expectations of the standard model.