47 resultados para valmistuksen mittaaminen
Resumo:
Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.
Resumo:
N-acetyl-β-D-glucosaminidaasi (NAGaasi) on glykosidaaseihin kuuluva, solujen lysosomeissa esiintyvä entsyymi, jota vapautuu maitoon utaretulehduksen aikana vaurioituneista utareen epiteelisoluista, neutrofiileistä ja makrofageista. NAGaasientsyymiaktiivisuuden on useissa tutkimuksissa havaittu korreloivan utareen tulehdustilan ja maidon soluluvun (SCC) kanssa ja sitä on ehdotettu käytettäväksi utareen epiteelisolutuhon mittaamiseen yksinään tai yhdistettynä SCC:n määritykseen. Koska saostuminen ei häiritse NAGaasi-entsyymiaktiivisuuden mittausta maidosta, entsyymiaktiivisuus ei muutu maitoa säilytettäessä ja entsyymin mittaaminen on melko yksinkertaista ja nopeaa, menetelmä vaikuttaisi sopivan hyvin seulontatestiksi piileville utaretulehduksille. NAGaasin käyttö on toistaiseksi rajoittunut tutkimuskäyttöön. Sen hyödyntämistä vaikeuttaa se, että terveille lehmille eri tutkimuksissa määritetyissä NAGaasi-entsyymiaktiivisuuden viitearvoissa on suurta vaihtelua. NAGaasi-entsyymiaktiivisuus maidossa on useiden tutkimusten mukaan korkeampi silloin, kun tulehduksen on aiheuttanut jokin merkittävä patogeeni kuin silloin, kun tulehduksen taustalla on vähäpätöinen patogeeni. Lypsykauden vaiheen on havaittu vaikuttavan maidon NAGaasi-entsyymiaktiivisuuteen siten, että aktiivisuudet ovat korkeampia heti poikimisen jälkeen ja lypsykauden lopulla. On myös havaittu, että normaalimaidossa NAGaasi-entsyymiaktiivisuus on hieman korkeampi loppumaidossa kuin alkumaidossa. Poikimakerran vaikutuksista NAGaasi-entsyymiaktiivisuuteen on ristiriitaisia tutkimustuloksia. Tämän tutkimuksen tavoitteena oli määrittää NAGaasi-entsyymiaktiivisuuden viitearvot terveen sekä utaretulehdusta sairastavan lypsylehmän maidossa, sekä selvittää tulehduksen voimakkuuden, aiheuttajapatogeenin, poikimakerran ja lypsykauden vaiheen vaikutusta kyseisen entsyymin aktiivisuuteen maidossa. Tutkimusaineistossa oli mukana kaikkiaan 838 vuosina 2000–2010 otettua maitonäytettä 62 eri lypsykarjatilalta Suomesta ja Virosta. Normaalimaidon NAGaasi-entsyymiaktiivisuuden viitearvot määritettiin yhdeksältä suomalaiselta lypsykarjatilalta kerätyistä 196 maitonäytteestä, jotka täyttivät asettamamme normaalimaidon kriteerit. Normaalimaidon kriteerit olivat seuraavat: SCC < 100 000, lehmällä ei ole utaretulehduksen oireita, poikimisesta on kulunut aikaa yli 30 vuorokautta ja edellisestä lypsystä yli 6 tuntia. NAGaasi-entsyymiaktiivisuus mitattiin modifioidulla Mattilan menetelmällä (Mattila 1985) vakioiduissa olosuhteissa. Aineisto analysoitiin käyttäen Stata Intercooler tilasto-ohjelman versiota 11.0 (Stata Corporation, Texas, USA). Maidon NAGaasientsyymiaktiivisuuteen terveessä neljänneksessä vaikuttavia tekijöitä tutkittiin lineaarisella sekamallilla, jossa sekoittavana tekijänä oli tila. SCC:n ja NAGaasi-entsyymiaktiivisuuden korrelaatiota arvioitiin terveillä lehmillä, piilevää utaretulehdusta sairastaneilla lehmillä ja koko aineistossa. Korrelaatiot laskettiin Pearsonin korrelaatiokertoimella. Tilastollisesti merkitsevänä raja-arvona kaikissa analyyseissä pidettiin p < 0.05. Normaalimaidon NAGaasi-entsyymiaktiivisuuden viitearvoiksi lehmillä, joilla poikimisesta oli kulunut yli 30 vrk, saatiin 0,09–1,04 pmol/min/μl maitoa. Verrattuna normaalimaidon NAGaasi-entsyymiaktiivisuuksien keskiarvoon (0,56) ja piilevää utaretulehdusta sairastaneiden lehmien NAGaasi-entsyymiaktiivisuuksien keskiarvoon (2,49), kliinistä utaretulehdusta sairastavien lehmien maidon NAGaasi-entsyymiaktiivisuus oli keskimäärin selvästi korkeampi (16,65). Keskiarvoissa oli selvä ero paikallisoireisten (12,24) ja yleisoireisten (17,74) lehmien välillä. Terveiden neljännesten maitonäytteistä määritetyn NAGaasi-entsyymiaktiivisuuden ja SCC:n välillä ei havaittu korrelaatiota. Piilevässä utaretulehduksessa havaittiin positiivinen korrelaatio (0,74) maidon NAGaasientsyymiaktiivisuuden ja SCC:n välillä. NAGaasi-entsyymiaktiivisuuteen vaikuttivat tilastollisesti merkitsevästi SCC, poikimisesta kulunut aika ja poikimakerta. Eri patogeeniryhmien osalta havaitsimme, että neljänneksissä, joista eristettiin vähäpätöinen patogeeni, NAGaasi-entsyymiaktiivisuus oli selvästi matalampi kuin neljänneksissä, joista eristettiin merkittävä patogeeni. NAGaasi-entsyymiaktiivisuuden keskiarvoksi vähäpätöisille patogeeneille (KNS, koryneformi) saatiin 2,82 ja merkittäville patogeeneille (S. aureus, Str. uberis, Str, agalactiae, Str. dysgalactiae, E.coli) 16,87.