50 resultados para soil- fibre composite
Resumo:
Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.
Resumo:
The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.
Resumo:
The present study evaluates the feasibility of undelimbed Scots pine (Pinus sylvestris L.) for integrated production of pulp and energy in a kraft pulp mill from the technical, economic and environmental points of view, focusing on the potential of bundle harvesting. The feasibility of tree sections for pulp production was tested by conducting an industrial wood-handling experiment, laboratory cooking and bleaching trials, using conventional small-diameter Scots pine pulpwood as a reference. These trials showed that undelimbed Scots pine sections can be processed in favourable conditions as a blend with conventional small-diameter pulpwood without reducing the pulp quality. However, fibre losses at various phases of the process may increase when using undelimbed material. In the economic evaluation, both pulp production and wood procurement costs were considered, using the relative wood paying capability of a kraft pulp mill as a determinant. The calculations were made for three Scots pine first-thinning stands with the breast-height diameter of the removal (6 12 cm) as the main distinctive factor. The supply chains included in the comparison were based on cut-to-length harvesting, whole-tree harvesting and bundle harvesting (whole-tree bundling). With the current ratio of pulp and energy prices, the wood paying capability declines with an increase in the proportion of the energy fraction of the raw material. The supply system based on the cut-to-length method was the most efficient option, resulting in the highest residual value at stump in most cases. A decline in the pulp price and an increase in the energy price improved the competitiveness of the whole-tree systems. With short truck transportation distances and low pulp prices, however, the harvesting of loose whole trees can result in higher residual value at stump in small-diameter stands. While savings in transportation costs did not compensate for the high cutting and compaction costs by the second prototype of the bundle harvester, an increase in transportation distances improved its competitiveness. Since harvesting undelimbed assortments increases nutrient export from the site, which can affect soil productivity, the whole-tree alternatives included in the present study cannot be recommended on infertile peatlands and mineral soils. The harvesting of loose whole trees or bundled whole trees implies a reduction in protective logging residues and an increase in site traffic or payloads. These factors increase the risk of soil damage, especially on peat soils with poor bearing capacity. Within the wood procurement parameters which were examined, the CO2 emissions of the supply systems varied from 13 27 kg m3. Compaction of whole trees into bundles reduced emissions from transportation by 30 39%, but these reductions were insufficient to compensate for the increased emissions from cutting and compaction.
Resumo:
The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.
Resumo:
Root and butt rot is the most harmful fungal disease affecting Norway spruce in southern Finland. In approximately 90 % of cases the causal agent is Heterobasidion parviporum. Root and butt rot infections have not been reported in Finnish peatlands. However, the increase in logging operations in peatlands means there is a risk that the fungus will eventually spread to these areas. The aim of this study was to find out the impact of growing site on the resistance of Norway spruce to Heterobasidion parviporum infections. This was investigated by artificially inoculating H. parviporum to spruce trees in pristine mire, drained peatland and mineral soil and comparing the defence reactions. Additionally, the effect of genotype on resistance was studied by comparing the responses of spruce clones representing different geographic origins. The roots and stems of the trees to be sampled were wounded and inoculated with wood dowels pre-colonised by H. parviporum hyphae. The resulting necrosis around the point of inoculation was observed. It was presumed that increased length of necrosis indicates high susceptibility of the tree to the disease. The relationship between growth rate and host resistance was also studied. The results indicated that growing site does not have a statistically significant effect on host resistance. The average length of necrosis around the point of inoculation was 35 mm in pristine mire, 37 mm in drained peatland and 40 mm in mineral soil. It was observed that growth rate does not affect resistance, but that the genotype of the tree does have an effect. The most resistant spruce clone was the one with Russian origin. The results suggest that the spruce stands in peatlands are not more resistant to root and butt rot infections than those in mineral soil. These findings should be taken into consideration when logging peatland forests.