98 resultados para optimum-path forest (OPF)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luonnosta haihtuvat orgaaniset yhdisteet, joita pääsee ilmaan etenkin metsistä, voivat vaikuttaa paikalliseen ja alueelliseen ilmanlaatuun, koska ne reagoivat ilmakehässä. Niiden reaktiotuotteet voivat myös osallistua uusien hiukkasten muodostumiseen ja kasvuun, millä voi olla vaikutusta ilmakehän säteilytaseeseen ja tätä kautta myös ilmastoon. Hiukkaset absorboivat ja sirottavat auringon säteilyä ja maapallon lämpösäteilyä minkä lisäksi ne vaikuttavat pilvien säteilyominaisuuksiin, määrään ja elinikään. Koko maapallon mittakaavassa luonnosta tulevat hiilivetypäästöt ylittävät ihmistoiminnan aiheuttamat päästöt moninkertaisesti. Tämän vuoksi luonnon päästöjen arviointi on tärkeää kun halutaan kehittää tehokkaita ilmanlaatu- ja ilmastostrategioita. Tämä tutkimus käsittelee boreaalisen metsän hiilivetypäästöjä. Boreaalinen metsä eli pohjoinen havumetsä on suurin maanpäällinen ekosysteemi, ja se ulottuu lähes yhtenäisenä nauhana koko pohjoisen pallonpuoliskon ympäri. Sille on tyypillistä puulajien suhteellisen pieni kirjo sekä olosuhteiden ja kasvun voimakkaat vuodenaikaisvaihtelut. Työssä on tutkittu Suomen yleisimmän boreaalisen puun eli männyn hiilivetypäästöjen vuodenaikaisvaihtelua sekä päästöjen riippuvuutta lämpötilasta ja valosta. Saatuja tuloksia on käytetty yhdessä muiden boreaalisilla puilla tehtyjen päästömittaustulosten kanssa Suomen metsiä varten kehitetyssä päästömallissa. Malli perustuu lisäksi maankäyttötietoihin, suomen metsille kehitettyyn luokitukseen ja meteorologisiin tietoihin, joiden avulla se laskee metsien hiilivetypäästöt kasvukauden aikana. Suomen metsien päästöt koostuvat koko kasvukauden ajan suurelta osin alfa- ja beta-pineenistä sekä delta-kareenista. Kesällä ja syksyllä päästöissä on myös paljon sabineenia, jota tulee etenkin lehtipuista. Päästöt seuraavat lämpötilan keskimääräistä vaihtelua, ovat suurimmillaan maan eteläosissa ja laskevat tasaisesti pohjoiseen siirryttäessä. Metsän isopreenipäästö on suhteellisen pieni – Suomessa tärkein isopreeniä päästävä puu on vähäpäästöinen kuusi, koska runsaspäästöisten pajun ja haavan osuus metsän lehtimassasta on hyvin pieni. Tässä työssä on myös laskettu ensimmäinen arvio metsän seskviterpeenipäästöistä. Seskviterpeenipäästöt alkavat Juhannuksen jälkeen ja ovat kasvukauden aikana samaa suuruusluokkaa kuin isopreenipäästöt. Vuositasolla Suomen metsien hiilivetypäästöt ovat noin kaksinkertaiset ihmistoiminnasta aiheutuviin päästöihin verrattuna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to produce information on and practical recommendations for informed decision-making on and capacity building for sustainable forest management (SFM) and good forest governance. This was done within the overall global framework for sustainable development with special emphasis on the EU and African frameworks and on Southern Sudan and Ethiopia in particular. The case studies on Southern Sudan and Ethiopia focused on local, national and regional issues. Moreover, this study attempted to provide both theoretical and practical new insight. The aim was to build an overall theoretical framework and to study its key contents and main implications for SFM and good forest governance at all administration levels, for providing new tools for capacity building in natural resources management. The theoretical framework and research approach were based on the original research problem and the general and specific aims of the study. The key elements of the framework encompass sustainable development, global and EU governance, sustainable forest management (SFM), good forest governance, as well as international and EU law. The selected research approach comprised matrix-based assessment of international, regional (EU and Africa) and national (Southern Sudan and Ethiopia) policy and legal documents. The specific case study on Southern Sudan also involved interviews and group discussions with local community members and government officials. As a whole, this study attempted to link the global, regional, national and local levels in forest-sector development and especially to analyse how the international policy development in environmental and forestry issues is reflected in field-level progress towards SFM and good forest governance, for the specific cases of Southern Sudan and Ethiopia. The results on Southern Sudan focused on the existing situation and perceived needs in capacity building for SFM and good forest governance at all administration levels. Specifically, the results of the case study on Southern Sudan presented the current situation in selected villages in the northern parts of Renk County in Upper Nile State, and the implications of Multilateral Environmental Agreements (MEAs) and of the new forest policy framework for capacity building actions. The results on Ethiopia focused on training, extension, research, education and new curriculum development within higher education institutions and particularly at the Wondo Genet College of Forestry and Natural Resources (WGCF-NR), which administratively lies under Hawassa University. The results suggest that, for both cases studies, informed decision-making on and capacity building for SFM and good forest governance require comprehensive, long-term, cross-sectoral, coherent and consistent approaches within the dynamic and evolving overall global framework, including its multiple inter-linked levels. The specific priority development and focus areas comprised the establishment of SFM and good forest governance in accordance with the overall sustainable development priorities and with more focus on the international trade in forest products that are derived from sustainable and legal sources with an emphasis on effective forest law enforcement and governance at all levels. In Upper Nile State in Southern Sudan there were positive development signals such as the will of the local people to plant more multipurpose trees on farmlands and range lands as well as the recognition of the importance of forests and trees for sustainable rural development where food security is a key element. In addition, it was evident that the local communities studied in Southern Sudan also wanted to establish good governance systems through partnerships with all actors and through increased local responsibilities. The results also suggest that the implementation of MEAs at the local level in Southern Sudan requires mutually supportive and coherent approaches within the agreements as well as significantly more resources and financial and technical assistance for capacity building, training and extension. Finally, the findings confirm the importance of full utilization of the existing local governance and management systems and their traditional and customary knowledge and practices, and of new development partnerships with full participation of all stakeholders. The planned new forest law for Southern Sudan, based on an already existing new forest policy, is expected to recognize the roles of local-level actors, and it would thus obviously facilitate the achieving of sustainable forest management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-timber forest products (NTFPs) are one of the major income sources for the rural population of Laos. An exploratory study was conducted to determine the role of non-timber forest products for rural communities of the study area. The study was carried out in two villages viz. Ban Napo and Ban Kouay of Sangthong district between January and March 2010. A semi-structured questionnaire was used to gather data from the respondents. Twenty-five respondents from each village were chosen based on their involvement in NTFPs collection and marketing activities. Statistically significant NTFPs income differences were not found between the villages and age groups of the respondents, however, significant differences were found in the annual incomes between farms size of the respondents. This study also analyzed the value chain structure of the three (See khai’ ton, Bamboo mats and Incense sticks) important non-timber forest products and the interactions between the actors in the case study areas. Barriers to entry the market, governance and upgrading possibilities have been discussed for each of the value chains. Comparison of unit prices at different levels of the value chains indicated uneven income distribution in favour of the intermediaries, factories and foreign buyers. The lack of capital, marketing information and negotiation skills restricted the villagers to increase their income. However, all the respondents have shown their satisfaction with their income from NTFPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further developed models allow extensive aerosol physical and chemical studies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature-based tourism is one of the fastest growing tourism sectors at the moment. It is also the form of tourism that often benefits the economy of rural areas. In addition to state owned forests, nature-based tourism is in many countries situated in private forests, which are not owned by entrepreneurs themselves. Therefore, the ownership issues and property rights form central challenges for the business activities. The maintenance of good relationships between private forest owners and entrepreneurs, as well as combining their interests, becomes vital. These relationships are typically exceptionally asymmetrical, granting the forest owner unilateral rights regulating the business activities in their forests. Despite this, the co-operation is typically very informal and the existing economic compensation models do not necessarily cover all the forest owners’ costs. The ownership issues bring their own characteristics to the relationship. Therefore, we argue that different aspects of ownership, especially psychological ones, have to be more critically examined and taken into consideration in order to build truly successful relations between these parties. This is crucial for sustaining the business activities. The core of psychological ownership is the sense of possession. Psychological ownership can be defined as a state, in which individuals perceive the target of ownership, the object or idea, as “theirs”. The concept of psychological ownership has so far been mainly used in the context of professional organizations. In this research, it has been used to explain the relationships between private forest owners and nature-based entrepreneurs. The aim of this study is to provide new information concerning the effect of psychological ownership on the collaboration and to highlight the good practices. To address the complexity of the phenomenon, qualitative case study methods were adopted to understand the role of ownership at the level of subjective experience. The empirical data was based on 27 in-depth interviews with private forest owners and nature-based tourism entrepreneurs. The data was analysed by using the methods of qualitative analysis to construct different typologies to describe the essence of successful collaboration. As a result of the study, the special characteristics and the practical level expressions of the psychological ownership in the privately owned forest context were analysed. Four different strategies to perceive these ownership characteristics in co-operation relationships were found. By taking the psychological ownership into consideration via these strategies, the nature-based entrepreneurs aim to balance the co-operation relationship and minimise the risks in long term activities based on privately owned forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are the basis of much of recent technological advance, ranging from coatings with mechanical or optical benefits to platforms for nanoscale electronics. In the latter, semiconductors have been the norm ever since silicon became the main construction material for a multitude of electronical components. The array of characteristics of silicon-based systems can be widened by manipulating the structure of the thin films at the nanoscale - for instance, by making them porous. The different characteristics of different films can then to some extent be combined by simple superposition. Thin films can be manufactured using many different methods. One emerging field is cluster beam deposition, where aggregates of hundreds or thousands of atoms are deposited one by one to form a layer, the characteristics of which depend on the parameters of deposition. One critical parameter is deposition energy, which dictates how porous, if at all, the layer becomes. Other parameters, such as sputtering rate and aggregation conditions, have an effect on the size and consistency of the individual clusters. Understanding nanoscale processes, which cannot be observed experimentally, is fundamental to optimizing experimental techniques and inventing new possibilities for advances at this scale. Atomistic computer simulations offer a window to the world of nanometers and nanoseconds in a way unparalleled by the most accurate of microscopes. Transmission electron microscope image simulations can then bridge this gap by providing a tangible link between the simulated and the experimental. In this thesis, the entire process of cluster beam deposition is explored using molecular dynamics and image simulations. The process begins with the formation of the clusters, which is investigated for Si/Ge in an Ar atmosphere. The structure of the clusters is optimized to bring it as close to the experimental ideal as possible. Then, clusters are deposited, one by one, onto a substrate, until a sufficiently thick layer has been produced. Finally, the concept is expanded by further deposition with different parameters, resulting in multiple superimposed layers of different porosities. This work demonstrates how the aggregation of clusters is not entirely understood within the scope of the approximations used in the simulations; yet, it is also shown how the continued deposition of clusters with a varying deposition energy can lead to a novel kind of nanostructured thin film: a multielemental porous multilayer. According to theory, these new structures have characteristics that can be tailored for a variety of applications, with precision heretofore unseen in conventional multilayer manufacture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies the tree species’ juvenile diversity in cacao (Theobroma cacao L.) based agroforestry and in primary forest in a natural conservation forest environment of Lore Lindu National Park, Sulawesi, Indonesia. Species’ adult composition in Lore Lindu National Park is relatively well studied, less is known about tree species’ diversity in seedling communities particularly in frequently disturbed cacao agroforestry field environment. Cacao production forms a potentially serious thread for maintaining the conservation areas pristine and forested in Sulawesi. The impacts of cacao production on natural environment are directly linked to the diversity and abundance of shade tree usage. The study aims at comparing differences between cacao agroforestry and natural forest in the surrounding area in their species composition in seedling and sapling size categories. The study was carried out in two parts. Biodiversity inventory of seedlings and saplings was combined with social survey with farmer interviews. Aim of the survey was to gain knowledge of the cacao fields, and farmers’ observations and choices regarding tree species associated with cacao. Data was collected in summer 2008. The assessment of the impact of environmental factors of solar radiation, weeding frequency, cacao tree planting density, distance to forest and distance to main park road, and type of habitat on seedling and sapling compositions was done with Non-metric Multidimensional Scaling (NMS). Outlier analysis was used to assess distorting variables for NMS, and Multi-Response Permutation Procedures (MRPP) analysis to differentiate the impact of categorical variables. Sampling success was estimated with rarefaction curves and jackknife estimate of species richness. In the inventory 135 species of trees and shrubs were found. Only some agroforestry related species were dominating. The most species rich were sapling communities in forest habitat. NMS was showing generally low linear correlation between variation of species composition and environmental variables. Solar radiation was having most significance as explaining variable. The most clearly separated in ordination were cacao and forest habitats. The results of seedling and sapling inventory were only partly coinciding with farmers’ knowledge of the tree species occurring on their fields. More research with frequent assessment of seedling cohorts is needed due to natural variability of cohorts and high mortality rate of seedlings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the role and nature of knowledge management (KM) in small and medium-sized companies (SMEs). Even though the role of knowledge as a competitive advantage is commonly recognized in the SME sector, almost no attention has been paid to the managing and developing of knowledge in SMEs. This thesis consists of three different sub-studies that were reported in four individual essays. The results of the questionnaire study indicate that nearly all companies that responded to the questionnaire (N = 108) found intangible assets, i.e. knowledge resources to be their main source of competitive advantage. However, only less than a third of the companies actively deal with knowledge management. The results also indicate a significant correlation between activity in knowledge management and sustainable organic growth of the company. The interview study (N = 10) explored the context and motives of the SMEs for managing their intangible assets, and the concrete practices of knowledge management. It turned out that KM facilitated change management, clarification of the vision and new strategy formulation. All the interviewed companies were aiming at improved innovation process, new ways of doing business and attaining an increased “knowledge focus” in their business. Nearly all also aspired to grow significantly. Thus, KM provides a strategy for these SMEs to guarantee their survival and sustainability in the turbulent markets. The action research was a process to assess and develop intangible resources in three companies. The experienced benefits were the clarification of future focus and strategy, creation of a common language to discuss strategic issues within the company, as well as improved balance of different categories of intangible assets. After the process all the case companies had developed in the chosen key areas. Thus, by systematic knowledge management the implementation of new strategic orientation (knowledge focusing) was facilitated. The findings can be summarized in two main points. First, knowledge management seems to serve the purpose of change, renewal and new strategic orientation in the SMEs. It also seems to be closely related to organic growth and innovation. All of these factors can be considered dimensions of entrepreneurship. Second, the conscious development of intangible assets can increase the balance of different categories of intangible assets and the overall knowledge focusing of business. In the case companies, this in turn facilitated the path to the improved overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Elohopea Suomen metsäjärvissä ja tekoaltaissa: ihmisen vaikutus kuormitukseen ja pitoisuuksiin kaloissa.