107 resultados para Lacrimal production
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
We present a measurement of the $WW+WZ$ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6~fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The $WW+WZ$ cross section is measured to be $17.4\pm3.3$~pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."
Resumo:
We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0.88 +0.13 -0.12 (stat+sys) +- 0.07(theory), and set the limit |V_{tb}|>0.66 at the 95% C.L.
Resumo:
We present a search for standard model (SM) Higgs boson production using ppbar collision data at sqrt(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb-1. We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m_H) in the range from 110 to 200 GeV. These limits are the most stringent for m_H > 130 GeV and are 1.29 above the predicted value of sigma(H) for mH = 165 GeV.
Resumo:
We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.
Resumo:
A measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{{\rm s}}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb$^{-1}$ is: $\sigma_{\ttbar}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.
Resumo:
We report on a search for direct scalar bottom quark (sbottom) pair production in $p \bar{p}$ collisions at $\sqrt{s}=1.96$~TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a $b$ quark. The study uses a CDF Run~II data sample corresponding to 2.65~fb${}^{-1}$ of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95$\%$ confidence-level upper limits on the sbottom pair production cross section of 0.1~pb are obtained. For neutralino masses below 70~GeV/$c^2$, sbottom masses up to 230~GeV/$c^2$ are excluded at 95$\%$ confidence level.
Resumo:
We report a search for single top quark production with the CDF II detector using 2.1 fb-1 of integrated luminosity of pbar p collisions at sqrt{s}=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W -> tau nu decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b-quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations (sigma), with a median expected sensitivity of 1.4 sigma. Assuming a top quark mass of 175 GeV/c2 and ascribing the excess to single top quark production, the cross section is measured to be 4.9+2.5-2.2(stat+syst)pb, consistent with measurements performed in independent datasets and with the standard model prediction.
Resumo:
We present the results of a search for pair production of the supersymmetric partner of the top quark (the stop quark $\tilde{t}_{1}$) decaying to a $b$-quark and a chargino $\chargino$ with a subsequent $\chargino$ decay into a neutralino $\neutralino$, lepton $\ell$, and neutrino $\nu$. Using a data sample corresponding to 2.7 fb$^{-1}$ of integrated luminosity of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector, we reconstruct the mass of candidate stop events and fit the observed mass spectrum to a combination of standard model processes and stop quark signal. We find no evidence for $\pairstop$ production and set 95% C.L. limits on the masses of the stop quark and the neutralino for several values of the chargino mass and the branching ratio ${\cal B}(\chargino\to\neutralino\ell^{\pm}\nu)$.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of pp̅ collision data collected by the Collider Detector at Fermilab at √s=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3-0.5+0.6(stat+sys) pb, extract the value of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb|=0.91-0.11+0.11(stat+sys)±0.07 (theory), and set a lower limit |Vtb|>0.71 at the 95% C.L., assuming mt=175 GeV/c2.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.
Resumo:
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.