165 resultados para Fysik
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.
Resumo:
This thesis reports investigations into the paper wetting process and its effects on the surface roughness and the out-of-plane (ZD) stiffness of machine-made paper. The aim of this work was to test the feasibility of employing air-borne ultrasound methods to determine surface roughness (by reflection) and ZD stiffness (by through transmission) of paper during penetration of distilled water, isopropanol and their mixtures. Air-borne ultrasound provides a non-contacting way to evaluate sample structure and mechanics during the liquid penetration event. Contrary to liquid immersion techniques, an air-borne measurement allows studying partial wetting of paper. In addition, two optical methods were developed to reveal the liquid location in paper during wetting. The laser light through transmission method was developed to monitor the liquid location in partially wetted paper. The white light reflection method was primarily used to monitor the penetration of the liquid front in the thickness direction. In the latter experiment the paper was fully wetted. The main results of the thesis were: 1) Liquid penetration induced surface roughening was quantified by monitoring the ultrasound reflection from the paper surface. 2) Liquid penetration induced stiffness alteration in the ZD of paper could be followed by measuring the change in the ultrasound ZD resonance in paper. 3) Through transmitted light revealed the liquid location in the partially wetted paper. 4) Liquid movement in the ZD of the paper could be observed by light reflection. The results imply that the presented ultrasonic means can without contact measure the alteration of paper roughness and stiffness during liquid transport. These methods can help avoiding over engineering the paper which reduces raw material and energy consumption in paper manufacturing. The presented optical means can estimate paper specific wetting properties, such as liquid penetration speed, transport mechanisms and liquid location within the paper structure. In process monitoring, these methods allow process tuning and manufacturing of paper with engineered liquid transport characteristics. With such knowledge the paper behaviour during printing can be predicted. These findings provide new methods for paper printing, surface sizing, and paper coating research.
Resumo:
The Earth's ecosystems are protected from the dangerous part of the solar ultraviolet (UV) radiation by stratospheric ozone, which absorbs most of the harmful UV wavelengths. Severe depletion of stratospheric ozone has been observed in the Antarctic region, and to a lesser extent in the Arctic and midlatitudes. Concern about the effects of increasing UV radiation on human beings and the natural environment has led to ground based monitoring of UV radiation. In order to achieve high-quality UV time series for scientific analyses, proper quality control (QC) and quality assurance (QA) procedures have to be followed. In this work, practices of QC and QA are developed for Brewer spectroradiometers and NILU-UV multifilter radiometers, which measure in the Arctic and Antarctic regions, respectively. These practices are applicable to other UV instruments as well. The spectral features and the effect of different factors affecting UV radiation were studied for the spectral UV time series at Sodankylä. The QA of the Finnish Meteorological Institute's (FMI) two Brewer spectroradiometers included daily maintenance, laboratory characterizations, the calculation of long-term spectral responsivity, data processing and quality assessment. New methods for the cosine correction, the temperature correction and the calculation of long-term changes of spectral responsivity were developed. Reconstructed UV irradiances were used as a QA tool for spectroradiometer data. The actual cosine correction factor was found to vary between 1.08-1.12 and 1.08-1.13. The temperature characterization showed a linear temperature dependence between the instrument's internal temperature and the photon counts per cycle. Both Brewers have participated in international spectroradiometer comparisons and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002-2010. The features of the spectral UV radiation time series at Sodankylä were analysed for the time period 1990-2001. No statistically significant long-term changes in UV irradiances were found, and the results were strongly dependent on the time period studied. Ozone was the dominant factor affecting UV radiation during the springtime, whereas clouds played a more important role during the summertime. During this work, the Antarctic NILU-UV multifilter radiometer network was established by the Instituto Nacional de Meteorogía (INM) as a joint Spanish-Argentinian-Finnish cooperation project. As part of this work, the QC/QA practices of the network were developed. They included training of the operators, daily maintenance, regular lamp tests and solar comparisons with the travelling reference instrument. Drifts of up to 35% in the sensitivity of the channels of the NILU-UV multifilter radiometers were found during the first four years of operation. This work emphasized the importance of proper QC/QA, including regular lamp tests, for the multifilter radiometers also. The effect of the drifts were corrected by a method scaling the site NILU-UV channels to those of the travelling reference NILU-UV. After correction, the mean ratios of erythemally-weighted UV dose rates measured during solar comparisons between the reference NILU-UV and the site NILU-UVs were 1.007±0.011 and 1.012±0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80°. Solar comparisons between the NILU-UVs and spectroradiometers showed a ±5% difference near local noon time, which can be seen as proof of successful QC/QA procedures and transfer of irradiance scales. This work also showed that UV measurements made in the Arctic and Antarctic can be comparable with each other.
Resumo:
The cosmological observations of light from type Ia supernovae, the cosmic microwave background and the galaxy distribution seem to indicate that the expansion of the universe has accelerated during the latter half of its age. Within standard cosmology, this is ascribed to dark energy, a uniform fluid with large negative pressure that gives rise to repulsive gravity but also entails serious theoretical problems. Understanding the physical origin of the perceived accelerated expansion has been described as one of the greatest challenges in theoretical physics today. In this thesis, we discuss the possibility that, instead of dark energy, the acceleration would be caused by an effect of the nonlinear structure formation on light, ignored in the standard cosmology. A physical interpretation of the effect goes as follows: due to the clustering of the initially smooth matter with time as filaments of opaque galaxies, the regions where the detectable light travels get emptier and emptier relative to the average. As the developing voids begin to expand the faster the lower their matter density becomes, the expansion can then accelerate along our line of sight without local acceleration, potentially obviating the need for the mysterious dark energy. In addition to offering a natural physical interpretation to the acceleration, we have further shown that an inhomogeneous model is able to match the main cosmological observations without dark energy, resulting in a concordant picture of the universe with 90% dark matter, 10% baryonic matter and 15 billion years as the age of the universe. The model also provides a smart solution to the coincidence problem: if induced by the voids, the onset of the perceived acceleration naturally coincides with the formation of the voids. Additional future tests include quantitative predictions for angular deviations and a theoretical derivation of the model to reduce the required phenomenology. A spin-off of the research is a physical classification of the cosmic inhomogeneities according to how they could induce accelerated expansion along our line of sight. We have identified three physically distinct mechanisms: global acceleration due to spatial variations in the expansion rate, faster local expansion rate due to a large local void and biased light propagation through voids that expand faster than the average. A general conclusion is that the physical properties crucial to account for the perceived acceleration are the growth of the inhomogeneities and the inhomogeneities in the expansion rate. The existence of these properties in the real universe is supported by both observational data and theoretical calculations. However, better data and more sophisticated theoretical models are required to vindicate or disprove the conjecture that the inhomogeneities are responsible for the acceleration.
Resumo:
Radiation therapy (RT) plays currently significant role in curative treatments of several cancers. External beam RT is carried out mostly by using megavoltage beams of linear accelerators. Tumor eradication and normal tissue complications correlate to dose absorbed in tissues. Normally this dependence is steep and it is crucial that actual dose within patient accurately correspond to the planned dose. All factors in a RT procedure contain uncertainties requiring strict quality assurance. From hospital physicist´s point of a view, technical quality control (QC), dose calculations and methods for verification of correct treatment location are the most important subjects. Most important factor in technical QC is the verification that radiation production of an accelerator, called output, is within narrow acceptable limits. The output measurements are carried out according to a locally chosen dosimetric QC program defining measurement time interval and action levels. Dose calculation algorithms need to be configured for the accelerators by using measured beam data. The uncertainty of such data sets limits for best achievable calculation accuracy. All these dosimetric measurements require good experience, are workful, take up resources needed for treatments and are prone to several random and systematic sources of errors. Appropriate verification of treatment location is more important in intensity modulated radiation therapy (IMRT) than in conventional RT. This is due to steep dose gradients produced within or close to healthy tissues locating only a few millimetres from the targeted volume. The thesis was concentrated in investigation of the quality of dosimetric measurements, the efficacy of dosimetric QC programs, the verification of measured beam data and the effect of positional errors on the dose received by the major salivary glands in head and neck IMRT. A method was developed for the estimation of the effect of the use of different dosimetric QC programs on the overall uncertainty of dose. Data were provided to facilitate the choice of a sufficient QC program. The method takes into account local output stability and reproducibility of the dosimetric QC measurements. A method based on the model fitting of the results of the QC measurements was proposed for the estimation of both of these factors. The reduction of random measurement errors and optimization of QC procedure were also investigated. A method and suggestions were presented for these purposes. The accuracy of beam data was evaluated in Finnish RT centres. Sufficient accuracy level was estimated for the beam data. A method based on the use of reference beam data was developed for the QC of beam data. Dosimetric and geometric accuracy requirements were evaluated for head and neck IMRT when function of the major salivary glands is intended to be spared. These criteria are based on the dose response obtained for the glands. Random measurement errors could be reduced enabling lowering of action levels and prolongation of measurement time interval from 1 month to even 6 months simultaneously maintaining dose accuracy. The combined effect of the proposed methods, suggestions and criteria was found to facilitate the avoidance of maximal dose errors of up to even about 8 %. In addition, their use may make the strictest recommended overall dose accuracy level of 3 % (1SD) achievable.
Resumo:
The Antarctic system comprises of the continent itself, Antarctica, and the ocean surrounding it, the Southern Ocean. The system has an important part in the global climate due to its size, its high latitude location and the negative radiation balance of its large ice sheets. Antarctica has also been in focus for several decades due to increased ultraviolet (UV) levels caused by stratospheric ozone depletion, and the disintegration of its ice shelves. In this study, measurements were made during three Austral summers to study the optical properties of the Antarctic system and to produce radiation information for additional modeling studies. These are related to specific phenomena found in the system. During the summer of 1997-1998, measurements of beam absorption and beam attenuation coefficients, and downwelling and upwelling irradiance were made in the Southern Ocean along a S-N transect at 6°E. The attenuation of photosynthetically active radiation (PAR) was calculated and used together with hydrographic measurements to judge whether the phytoplankton in the investigated areas of the Southern Ocean are light limited. By using the Kirk formula the diffuse attenuation coefficient was linked to the absorption and scattering coefficients. The diffuse attenuation coefficients (Kpar) for PAR were found to vary between 0.03 and 0.09 1/m. Using the values for KPAR and the definition of the Sverdrup critical depth, the studied Southern Ocean plankton systems were found not to be light limited. Variabilities in the spectral and total albedo of snow were studied in the Queen Maud Land region of Antarctica during the summers of 1999-2000 and 2000-2001. The measurement areas were the vicinity of the South African Antarctic research station SANAE 4, and a traverse near the Finnish Antarctic research station Aboa. The midday mean total albedos for snow were between 0.83, for clear skies, and 0.86, for overcast skies, at Aboa and between 0.81 and 0.83 for SANAE 4. The mean spectral albedo levels at Aboa and SANAE 4 were very close to each other. The variations in the spectral albedos were due more to differences in ambient conditions than variations in snow properties. A Monte-Carlo model was developed to study the spectral albedo and to develop a novel nondestructive method to measure the diffuse attenuation coefficient of snow. The method was based on the decay of upwelling radiation moving horizontally away from a source of downwelling light. This was assumed to have a relation to the diffuse attenuation coefficient. In the model, the attenuation coefficient obtained from the upwelling irradiance was higher than that obtained using vertical profiles of downwelling irradiance. The model results were compared to field measurements made on dry snow in Finnish Lapland and they correlated reasonably well. Low-elevation (below 1000 m) blue-ice areas may experience substantial melt-freeze cycles due to absorbed solar radiation and the small heat conductivity in the ice. A two-dimensional (x-z) model has been developed to simulate the formation and water circulation in the subsurface ponds. The model results show that for a physically reasonable parameter set the formation of liquid water within the ice can be reproduced. The results however are sensitive to the chosen parameter values, and their exact values are not well known. Vertical convection and a weak overturning circulation is generated stratifying the fluid and transporting warmer water downward, thereby causing additional melting at the base of the pond. In a 50-year integration, a global warming scenario mimicked by a decadal scale increase of 3 degrees per 100 years in air temperature, leads to a general increase in subsurface water volume. The ice did not disintegrate due to the air temperature increase after the 50 year integration.
Resumo:
Controlled nuclear fusion is one of the most promising sources of energy for the future. Before this goal can be achieved, one must be able to control the enormous energy densities which are present in the core plasma in a fusion reactor. In order to be able to predict the evolution and thereby the lifetime of different plasma facing materials under reactor-relevant conditions, the interaction of atoms and molecules with plasma first wall surfaces have to be studied in detail. In this thesis, the fundamental sticking and erosion processes of carbon-based materials, the nature of hydrocarbon species released from plasma-facing surfaces, and the evolution of the components under cumulative bombardment by atoms and molecules have been investigated by means of molecular dynamics simulations using both analytic potentials and a semi-empirical tight-binding method. The sticking cross-section of CH3 radicals at unsaturated carbon sites at diamond (111) surfaces is observed to decrease with increasing angle of incidence, a dependence which can be described by a simple geometrical model. The simulations furthermore show the sticking cross-section of CH3 radicals to be strongly dependent on the local neighborhood of the unsaturated carbon site. The erosion of amorphous hydrogenated carbon surfaces by helium, neon, and argon ions in combination with hydrogen at energies ranging from 2 to 10 eV is studied using both non-cumulative and cumulative bombardment simulations. The results show no significant differences between sputtering yields obtained from bombardment simulations with different noble gas ions. The final simulation cells from the 5 and 10 eV ion bombardment simulations, however, show marked differences in surface morphology. In further simulations the behavior of amorphous hydrogenated carbon surfaces under bombardment with D^+, D^+2, and D^+3 ions in the energy range from 2 to 30 eV has been investigated. The total chemical sputtering yields indicate that molecular projectiles lead to larger sputtering yields than atomic projectiles. Finally, the effect of hydrogen ion bombardment of both crystalline and amorphous tungsten carbide surfaces is studied. Prolonged bombardment is found to lead to the formation of an amorphous tungsten carbide layer, regardless of the initial structure of the sample. In agreement with experiment, preferential sputtering of carbon is observed in both the cumulative and non-cumulative simulations
Resumo:
Accurate and stable time series of geodetic parameters can be used to help in understanding the dynamic Earth and its response to global change. The Global Positioning System, GPS, has proven to be invaluable in modern geodynamic studies. In Fennoscandia the first GPS networks were set up in 1993. These networks form the basis of the national reference frames in the area, but they also provide long and important time series for crustal deformation studies. These time series can be used, for example, to better constrain the ice history of the last ice age and the Earth s structure, via existing glacial isostatic adjustment models. To improve the accuracy and stability of the GPS time series, the possible nuisance parameters and error sources need to be minimized. We have analysed GPS time series to study two phenomena. First, we study the refraction in the neutral atmosphere of the GPS signal, and, second, we study the surface loading of the crust by environmental factors, namely the non-tidal Baltic Sea, atmospheric load and varying continental water reservoirs. We studied the atmospheric effects on the GPS time series by comparing the standard method to slant delays derived from a regional numerical weather model. We have presented a method for correcting the atmospheric delays at the observational level. The results show that both standard atmosphere modelling and the atmospheric delays derived from a numerical weather model by ray-tracing provide a stable solution. The advantage of the latter is that the number of unknowns used in the computation decreases and thus, the computation may become faster and more robust. The computation can also be done with any processing software that allows the atmospheric correction to be turned off. The crustal deformation due to loading was computed by convolving Green s functions with surface load data, that is to say, global hydrology models, global numerical weather models and a local model for the Baltic Sea. The result was that the loading factors can be seen in the GPS coordinate time series. Reducing the computed deformation from the vertical time series of GPS coordinates reduces the scatter of the time series; however, the long term trends are not influenced. We show that global hydrology models and the local sea surface can explain up to 30% of the GPS time series variation. On the other hand atmospheric loading admittance in the GPS time series is low, and different hydrological surface load models could not be validated in the present study. In order to be used for GPS corrections in the future, both atmospheric loading and hydrological models need further analysis and improvements.
Resumo:
The increased accuracy in the cosmological observations, especially in the measurements of the comic microwave background, allow us to study the primordial perturbations in grater detail. In this thesis, we allow the possibility for a correlated isocurvature perturbations alongside the usual adiabatic perturbations. Thus far the simplest six parameter \Lambda CDM model has been able to accommodate all the observational data rather well. However, we find that the 3-year WMAP data and the 2006 Boomerang data favour a nonzero nonadiabatic contribution to the CMB angular power sprctrum. This is primordial isocurvature perturbation that is positively correlated with the primordial curvature perturbation. Compared with the adiabatic \Lambda CMD model we have four additional parameters describing the increased complexity if the primordial perturbations. Our best-fit model has a 4% nonadiabatic contribution to the CMB temperature variance and the fit is improved by \Delta\chi^2 = 9.7. We can attribute this preference for isocurvature to a feature in the peak structure of the angular power spectrum, namely, the widths of the second and third acoustic peak. Along the way, we have improved our analysis methods by identifying some issues with the parametrisation of the primordial perturbation spectra and suggesting ways to handle these. Due to the improvements, the convergence of our Markov chains is improved. The change of parametrisation has an effect on the MCMC analysis because of the change in priors. We have checked our results against this and find only marginal differences between our parametrisation.
Resumo:
Together with cosmic spherules, interplanetary dust particles and lunar samples returned by Apollo and Luna missions, meteorites are the only source of extraterrestrial material on Earth. The physical properties of meteorites, especially their magnetic susceptibility, bulk and grain density, porosity and paleomagnetic information, have wide applications in planetary research and can reveal information about origin and internal structure of asteroids. Thus, an expanded database of meteorite physical properties was compiled with new measurements done in meteorite collections across Europe using a mobile laboratory facility. However, the scale problem may bring discrepancies in the comparison of asteroid and meteorite properties. Due to inhomogenity, the physical properties of meteorites studied on a centimeter or millimeter scale may differ from those of asteroids determined on kilometer scales. Further difference may arise from shock effects, space and terrestrial weathering and from difference in material properties at various temperatures. Close attention was given to the reliability of the paleomagnetic and paleointensity information in meteorites and the methodology to test for magnetic overprints was prepared and verified.
Resumo:
Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness
Resumo:
Currently, we live in an era characterized by the completion and first runs of the LHC accelerator at CERN, which is hoped to provide the first experimental hints of what lies beyond the Standard Model of particle physics. In addition, the last decade has witnessed a new dawn of cosmology, where it has truly emerged as a precision science. Largely due to the WMAP measurements of the cosmic microwave background, we now believe to have quantitative control of much of the history of our universe. These two experimental windows offer us not only an unprecedented view of the smallest and largest structures of the universe, but also a glimpse at the very first moments in its history. At the same time, they require the theorists to focus on the fundamental challenges awaiting at the boundary of high energy particle physics and cosmology. What were the contents and properties of matter in the early universe? How is one to describe its interactions? What kind of implications do the various models of physics beyond the Standard Model have on the subsequent evolution of the universe? In this thesis, we explore the connection between in particular supersymmetric theories and the evolution of the early universe. First, we provide the reader with a general introduction to modern day particle cosmology from two angles: on one hand by reviewing our current knowledge of the history of the early universe, and on the other hand by introducing the basics of supersymmetry and its derivatives. Subsequently, with the help of the developed tools, we direct the attention to the specific questions addressed in the three original articles that form the main scientific contents of the thesis. Each of these papers concerns a distinct cosmological problem, ranging from the generation of the matter-antimatter asymmetry to inflation, and finally to the origin or very early stage of the universe. They nevertheless share a common factor in their use of the machinery of supersymmetric theories to address open questions in the corresponding cosmological models.
Resumo:
This is a study of ultra-cold Fermi gases in different systems. This thesis is focused on exotic superfluid states, for an example on the three component Fermi gas and the FFLO phase in optical lattices. In the two-components case, superfluidity is studied mainly in the case of the spin population imbalanced Fermi gases and the phase diagrams are calculated from the mean-field theory. Different methods to detect different phases in optical lattices are suggested. In the three-component case, we studied also the uniform gas and harmonically trapped system. In this case, the BCS theory is generalized to three-component gases. It is also discussed how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical lattices. The thesis is divided in chapters as follows: Chapter 1 is an introduction to the field of cold quantum gases. In chapter 2 optical lattices and their experimental characteristics are discussed. Chapter 3 deals with two-components Fermi gases in optical lattices and the paired states in lattices. In chapter 4 three-component Fermi gases with and without a harmonic trap are explored, and the pairing mechanisms are studied. In this chapter, we also discuss three-component Fermi gases in optical lattices. Chapter 5 devoted to the higher order correlations, and what they can tell about the paired states. Chapter 6 concludes the thesis.
Resumo:
Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.