57 resultados para DM yields
Resumo:
The integrated European debt capital market has undoubtedly broadened the possibilities for companies to access funding from the public and challenged investors to cope with an ever increasing complexity of its market participants. Well into the Euro-era, it is clear that the unified market has created potential for all involved parties, where investment opportunities are able to meet a supply of funds from a broad geographical area now summoned under a single currency. Europe’s traditionally heavy dependency on bank lending as a source of debt capital has thus been easing as corporate residents are able to tap into a deep and liquid capital market to satisfy their funding needs. As national barriers eroded with the inauguration of the Euro and interest rates for the EMU-members converged towards over-all lower yields, a new source of debt capital emerged to the vast majority of corporate residents under the new currency and gave an alternative to the traditionally more maturity-restricted bank debt. With increased sophistication came also an improved knowledge and understanding of the market and its participants. Further, investors became more willing to bear credit risk, which opened the market for firms of ever lower creditworthiness. In the process, the market as a whole saw a change in the profile of issuers, as non-financial firms increasingly sought their funding directly from the bond market. This thesis consists of three separate empirical studies on how corporates fund themselves on the European debt capital markets. The analysis focuses on a firm’s access to and behaviour on the capital market, subsequent the decision to raise capital through the issuance of arm’s length debt on the bond market. The specific areas considered are contributing to our knowledge in the fields of corporate finance and financial markets by considering explicitly firms’ primary market activities within the new market area. The first essay explores how reputation of an issuer affects its debt issuance. Essay two examines the choice of interest rate exposure on newly issued debt and the third and final essay explores pricing anomalies on corporate debt issues.
Resumo:
Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are the most common forms of muscular dystrophy affecting adults. They are autosomal dominant diseases caused by microsatellite tri- or tetranucleotide repeat expansion mutations in transcribed but not translated gene regions. The mutant RNA accumulates in nuclei disturbing the expression of several genes. The more recently identified DM2 disease is less well known, yet more than 300 patients have been confirmed in Finland thus far, and the true number is believed to be much higher. DM1 and DM2 share some features in general clinical presentation and molecular pathology, yet they show distinctive differences, including disease severity and differential muscle and fiber type involvement. However, the molecular differences underlying DM1 and DM2 muscle pathology are not well understood. Although the primary tissue affected is muscle, both DMs show a multisystemic phenotype due to wide expression of the mutation-carrying genes. DM2 is particularly intriguing, as it shows an incredibly wide spectrum of clinical manifestations. For this reason, it constitutes a real diagnostic challenge. The core symptoms in DM2 include proximal muscle weakness, muscle pain, myotonia, cataracts, cardiac conduction defects and endocrinological disturbations; however, none of these is mandatory for the disease. Myalgic pains may be the most disabling symptom for decades, sometimes leading to incapacity for work. In addition, DM2 may cause major socio-economical consequences for the patient, if not diagnosed, due to misunderstanding and false stigmatization. In this thesis work, we have (I) improved DM2 differential diagnostics based on muscle biopsy, and (II) described abnormalities in mRNA and protein expression in DM1 and DM2 patient skeletal muscles, showing partial differences between the two diseases, which may contribute to muscle pathology in these diseases. This is the first description of histopathological differences between DM1 and DM2, which can be used in differential diagnostics. Two novel high-resolution applications of in situ -hybridization have been described, which can be used for direct visualization of the DM2 mutation in muscle biopsy sections, or mutation size determination on extended DNA-fibers. By measuring protein and mRNA expression in the samples, differential changes in expression patterns affecting contractile proteins, other structural proteins and calcium handling proteins in DM2 compared to DM1 were found. The dysregulation at mRNA level was caused by altered transciption and abnormal splicing. The findings reported here indicate that the extent of aberrant splicing is higher in DM2 compared to DM1. In addition, the described abnormalities to some extent correlate to the differences in fiber type involvement in the two disorders.
Resumo:
This master thesis studies how trade liberalization affects the firm-level productivity and industrial evolution. To do so, I built a dynamic model that considers firm-level productivity as endogenous to investigate the influence of trade on firm’s productivity and the market structure. In the framework, heterogeneous firms in the same industry operate differently in equilibrium. Specifically, firms are ex ante identical but heterogeneity arises as an equilibrium outcome. Under the setting of monopolistic competition, this type of model yields an industry that is represented not by a steady-state outcome, but by an evolution that rely on the decisions made by individual firms. I prove that trade liberalization has a general positive impact on technological adoption rates and hence increases the firm-level productivity. Besides, this endogenous technology adoption model also captures the stylized facts: exporting firms are larger and more productive than their non-exporting counterparts in the same sector. I assume that the number of firms is endogenous, since, according to the empirical literature, the industrial evolution shows considerably different patterns across countries; some industries experience large scale of firms’ exit in the period of contracting market shares, while some industries display relative stable number of firms or gradually increase quantities. The special word “shakeout” is used to describe the dramatic decrease in the number of firms. In order to explain the causes of shakeout, I construct a model where forward-looking firms decide to enter and exit the market on the basis of their state of technology. In equilibrium, firms choose different dates to adopt innovation which generate a gradual diffusion process. It is exactly this gradual diffusion process that generates the rapid, large-scale exit phenomenon. Specifically, it demonstrates that there is a positive feedback between firm’s exit and adoption, the reduction in the number of firms increases the incentives for remaining firms to adopt innovation. Therefore, in the setting of complete information, this model not only generates a shakeout but also captures the stability of an industry. However, the solely national view of industrial evolution neglects the importance of international trade in determining the shape of market structure. In particular, I show that the higher trade barriers lead to more fragile markets, encouraging the over-entry in the initial stage of industry life cycle and raising the probability of a shakeout. Therefore, more liberalized trade generates more stable market structure from both national and international viewpoints. The main references are Ederington and McCalman(2008,2009).
Resumo:
The profitability of fast-growing trees was investigated in the northeastern and eastern provinces of Thailand. The financial, economic, and tentative environmental-economic profitability was determined separately for three fast-growing plantation tree species and for three categories of plantation managers: the private industry, the state (the Royal Forest Department) and the farmers. Fast-growing tree crops were also compared with teak (Tectona grandis), a traditional medium or long rotation species, and Para rubber (Hevea brasiliensis) which presently is the most common cultivated tree in Thailand. The optimal rotation for Eucalyptus camaldulensis pulpwood production was eight years. This was the most profitable species in pulpwood production. In sawlog production Acacia mangium and Melia azedarach showed a better financial profitability. Para rubber was more profitable and teak less profitable than the three fast-growing species. The economic profitability was higher than the financial one, and the tentative environmental-economic profitability was slightly higher than the economic profitability. The profitability of tree growing is sensitive to plantation yields and labour cost changes and especially to wood prices. Management options which aim at pulpwood production are more sensitive to input or output changes than those options which include sawlog production. There is an urgent need to improve the growth and yield data and to study the environmental impacts of tree plantations for all species and plantation types.
Resumo:
Productive coexistence and coexistence gain of populations were studied using nine years' data from field experiments of Taxodium ascendens-intercrop systems in Lixiahe, Jiangsu Province, China. A theoretical framework for productive coexistence in agroforestry was developed. Interaction patterns between trees and intercrops were presented within this framework. A model framework was developed to describe the coexistence gain and interaction of populations in T. ascendens-intercrop systems. Facilitation and resource sharing were identified as main contribution to the advantage of species combination in agroforestry. The model of population interaction developed in the present study was accepted for describing the interaction of populations in T. ascendens-intercrop systems, because it explained a high proportion of the variance of experimental data and fitted well the observations in most intercropping types. The model developed in the present study provides flexibility for describing different patterns of intra- and inter-specific interactions. Model coefficients were applied to the determination of the ecological compatibility of species. Managed T. ascendens-intercrop systems were advantageous as compared to a monoculture of trees or arable crops. In T. ascendens stands up to the age of three, arable crops contributed about 50-80 % of the total biomass yield of agroforestry. The diameter or height growth of T. ascendens was not significantly influenced by intercrops, indicating that intercropping under trees produced extra yields but did not depress the tree growth. When the trees were young (during the first three years), T. ascendens did not depress the crop yields, and a land equivalent ratio greater than unity was obtained together with a high yield of both components. The diameter and height of the trees were similar in four spacing configurations with an equal number of trees per hectare up to the age of eight, but wider between-rows open range were beneficial for the intercrops. The relationship between open-ranges and species coexistence was also analysed and the distribution of soil nutrients studied.
Resumo:
Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.
Resumo:
Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.
Resumo:
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide-and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.
Resumo:
Kasvit ottavat vettä parhaiten kasteluravinneliuoksesta, jonka ravinnepitoisuus on pieni. Intensiivisessä kasvihuonetuotannossa käytetään silti kastelulannoituksessa usein korkeita ravinnepitoisuuksia ravinnepuutosten ja satotappioiden välttämiseksi. Jakojuuriviljelyssä kasvin juuriston annetaan kasvaa kahteen erilliseen kasvualustaosioon. Tällöin toiselle puolelle annetaan johtokyvyltään väkevää ja toiselle puolelle laimeaa ravinneliuosta. Erityisesti kasvihuonekurkun, joka on herkkä kasvualustan suolaisuuden aiheuttamille vedensaantiongelmille, on todettu hyötyvän tästä tekniikasta, mikä näkyy kasvaneina satoina. Tämän MTT Piikkiössä toteutetun kasvihuonekurkun jakojuuriviljelytutkimuksen tavoitteena oli tarkentaa tekniikkaa erityisesti kasteluliuosten johtokyvyn osalta. Yhtenäisjuuriviljelyn ja perinteisen jakojuuriviljelyn lisäksi kokeessa oli kaksi jakojuuriviljelykäsittelyä, joissa ravinneliuosväkevyyksiä vaihdettiin väliajoin juuriston toimintakyvyn parantamiseksi. Erillisessä osakokeessa tutkittiin erilaisten johtokyky-yhdistelmien vaikutusta kasvihuonekurkun vegetatiiviseen kasvuun maanpäällisten ja -alaisten kasvinosien välillä sekä juurten morfologiaan ja anatomiaan. Tulokset osoittivat, että jakojuuriviljely lisäsi kasvihuonekurkun sadontuottoa jopa 16 %, mutta ei vaikuttanut koko viljelykauden veden tai ravinteiden ottoon. Yhtenäisjuuriviljelyssä muodostui eniten piikkikärkisiä hedelmiä, mikä viittaa vedensaantiongelmiin haihdutustarpeen ollessa suurin. Viljelytekniikalla ei ollut vaikutusta kasvien vegetatiiviseen kasvuun tai kasvuston rakenteeseen. Lehtiruodeista tehdyt nitraatti- ja kaliummittaukset osoittivat, ettei kasteluliuosten ravinnepitoisuuksilla ollut vaikutusta juurten ravinteiden ottoon. Erilaisilla johtokyky-yhdistelmillä oli huomattavampi vaikutus kasvihuonekurkun juurten painoon kuin verson painoon tai varren pituuskasvuun. Lehtiruotianalyysit viittasivat ravinteiden erilaiseen allokointiin eri johtokyky-yhdistelmissä. Korkeiden johtokykyjen aiheuttama osmoottinen stressi johti muutoksiin juurten morfologiassa ja anatomiassa. Tulosten perusteella jakojuuriviljely paransi kehittyvien hedelmien kohdevahvuutta suhteessa muihin kohteisiin vaikuttamatta vegetatiiviseen kasvuun. Kun laimean ja väkevän ravinneliuoksen puolia vaihdettiin, juuristo otti joustavasti vettä ja ravinteita olosuhteiden määräämästä edullisemmasta johtokyvystä, jolloin kasvihuonekurkun viljelyssä saavutettiin merkittävä satoetu. Juuriston jakaminen vaikuttanee kasvien hormoniaineenvaihduntaan ja voi heikentää juuriston kasvua heikentämättä sen toimintakykyä, jolloin yhteyttämistuotteita kohdennetaan tehokkaammin maanpäällisten osien kasvuun.
Resumo:
Suomen maatalousmaihin kertynyttä fosforia hyödynnetään tehottomasti, ja samalla muokkauskerroksen suuri fosforimäärä on alttiina huuhtoutumiselle. Arbuskelimykorritsaa (AM) hyödyntämällä on mahdollista tehostaa viljelykasvin fosforinottoa ja kasvua, ja siten vähentää fosforin huuhtoutumista. Tämän tutkielman tavoitteena oli selvittää mykorritsan vaikutus kasvin kasvuun ja fosforinottoon karjanlantalannoituksella mineraalilannoitukseen verrattuna sekä näiden lannoitusten pitkäaikaisvaikutusta AM-sieniyhteisöihin. Jotta lannoituskäytäntöjen vaikutus mykorritsaan voitiin suhteuttaa muihin maan laatutekijöihin, näiden käytäntöjen vaikutus myös satomääriin sekä muihin maan laatumittareihin arvioitiin. Pitkäaikainen kenttäkoe perustettiin kolmelle paikkakunnalle Pohjois-Ruotsissa vuosina 1965–66. Kuusivuotinen viljelykierto koostui joko viisivuotisesta nurmesta ja ohrasta tai ohramonokulttuurista. Lannoituskäsittelyt 32-vuoden ajan olivat suositusten mukainen (NPK) ja edelliseen nähden kaksinkertainen (2NPK) mineraalilannoitus sekä karjanlantalannoitus (KL), jonka ravinnemäärä vastasi NPK -käsittelyä. Kolmen lannoituskäsittelyn vaikutusta mykorritsan tehokkuuteen kasvin kasvun ja fosforiravitsemuksen näkökulmasta tutkittiin astiakokeissa. Mykorritsasieniyhteisöjen toiminnallisten erojen selvittämiseksi tehtiin takaisin- ja ristiinsiirrostuskoe. (5 v-%) steriloitua maanäytettä NPK- ja KL -käsittelyistä siirrostettiin käsittelemättömiin maanäytteisiin, jotka olivat samoista lannoituskäsittelyistä. Mykorritsan positiivinen vaikutus kasvin kasvuun ja fosforiravitsemukseen oli suurin kun käytettiin karjanlantaa. NPK ja 2NPK -käsittelyiden välillä ei havaittu eroja. Takaisin- ja ristiinsiirrostuskokeessa ei ollut tilastollisesti merkitseviä eroja. Nurmi- ja ohrasadot olivat suurimmat kun mineraalilannoitetta annettiin suosituksiin nähden kaksinkertainen määrä. Satomäärät olivat yhtä suuret tai suuremmat kun käytettiin karjanlantaa NPK –lannoituksen sijaan. Karjanlantakäsittely lisäsi maaperän kokonaishiili- ja kokonaistyppipitoisuutta verrattuna NPK -käsittelyyn, joka sisälsi saman määrän ravinteita. Samalla huuhtoutumiselle altis liukoisen fosforin pitoisuus säilyi alhaisella tasolla. Karjanlanta edisti mykorritsan toimintaedellytyksiä, ja siksi mykorritsasta saatua hyötyä fosforinotossa ja kasvuvaikutuksena mineraalilannoitteisiin verrattuna, mutta se ei vaikuttanut mykorritsasieniyhteisön toiminnallisiin ominaisuuksiin. Karjanlantalannoitus paransi mitattuja maan ominaisuuksia kokonaisuudessaan, eikä se vähentänyt satoja.
Resumo:
Bayesian networks are compact, flexible, and interpretable representations of a joint distribution. When the network structure is unknown but there are observational data at hand, one can try to learn the network structure. This is called structure discovery. This thesis contributes to two areas of structure discovery in Bayesian networks: space--time tradeoffs and learning ancestor relations. The fastest exact algorithms for structure discovery in Bayesian networks are based on dynamic programming and use excessive amounts of space. Motivated by the space usage, several schemes for trading space against time are presented. These schemes are presented in a general setting for a class of computational problems called permutation problems; structure discovery in Bayesian networks is seen as a challenging variant of the permutation problems. The main contribution in the area of the space--time tradeoffs is the partial order approach, in which the standard dynamic programming algorithm is extended to run over partial orders. In particular, a certain family of partial orders called parallel bucket orders is considered. A partial order scheme that provably yields an optimal space--time tradeoff within parallel bucket orders is presented. Also practical issues concerning parallel bucket orders are discussed. Learning ancestor relations, that is, directed paths between nodes, is motivated by the need for robust summaries of the network structures when there are unobserved nodes at work. Ancestor relations are nonmodular features and hence learning them is more difficult than modular features. A dynamic programming algorithm is presented for computing posterior probabilities of ancestor relations exactly. Empirical tests suggest that ancestor relations can be learned from observational data almost as accurately as arcs even in the presence of unobserved nodes.
Resumo:
The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.