720 resultados para Clinical medicine
Resumo:
Children with intellectual disability are at increased risk for emotional and behavioural problems, but many of these disturbances fail to be diagnosed. Structured checklists have been used to supplement the psychiatric assessment of children without intellectual disability, but for children with intellectual disability, only a few checklists are available. The aim of the study was to investigate psychiatric disturbances among children with intellectual disability: the prevalence, types and risk factors of psychiatric disturbances as well as the applicability of the Finnish translations of the Developmental Behaviour Checklist (DBC-P) and the Child Behavior Checklist (CBCL) in the assessment of psychopathology. The subjects comprised 155 children with intellectual disability, and data were obtained from case records and five questionnaires completed by the parents or other carers of the child. According to case records, a psychiatric disorder had previously been diagnosed in 11% of the children. Upon careful re-examination of case records, the total proportion of children with a psychiatric disorder increased to 33%. According to checklists, the frequency of probable psychiatric disorder was 34% by the DBC-P, and 43% by the CBCL. The most common diagnoses were pervasive developmental disorders and hyperkinetic disorders. The results support previous findings that compared with children without intellectual disability, the risk of psychiatric disturbances is 2-3-fold in children with intellectual disability. The risk of psychopathology was most significantly increased by moderate intellectual disability and low socio-economic status, and decreased by adaptive behaviour, language development, and socialisation as well as living with both biological parents. The results of the study suggest that both the DBC-P and the CBCL can be used to discriminate between children with intellectual disability with and without emotional or psychiatric disturbance. The DBC-P is suitable for children with any degree of intellectual disability, and the CBCL is suitable at least for children with mild intellectual disability. Because the problems of children with intellectual disability differ somewhat from those of children without intellectual disability, checklists designed specifically for children with intellectual disability are needed.
Resumo:
Background. Hyperlipidemia is a common concern in patients with heterozygous familial hypercholesterolemia (HeFH) and in cardiac transplant recipients. In both groups, an elevated serum LDL cholesterol level accelerates the development of atherosclerotic vascular disease and increases the rates of cardiovascular morbidity and mortality. The purpose of this study is to assess the pharmacokinetics, efficacy, and safety of cholesterol-lowering pravastatin in children with HeFH and in pediatric cardiac transplant recipients receiving immunosuppressive medication. Patients and Methods. The pharmacokinetics of pravastatin was studied in 20 HeFH children and in 19 pediatric cardiac transplant recipients receiving triple immunosuppression. The patients ingested a single 10-mg dose of pravastatin, and plasma pravastatin concentrations were measured up to 10/24 hours. The efficacy and safety of pravastatin (maximum dose 10 to 60 mg/day and 10 mg/day) up to one to two years were studied in 30 patients with HeFH and in 19 cardiac transplant recipients, respectively. In a subgroup of 16 HeFH children, serum non-cholesterol sterol ratios (102 x mmol/mol of cholesterol), surrogate estimates of cholesterol absorption (cholestanol, campesterol, sitosterol), and synthesis (desmosterol and lathosterol) were studied at study baseline (on plant stanol esters) and during combination with pravastatin and plant stanol esters. In the transplant recipients, the lipoprotein levels and their mass compositions were analyzed before and after one year of pravastatin use, and then compared to values measured from 21 healthy pediatric controls. The transplant recipients were grouped into patients with transplant coronary artery disease (TxCAD) and patients without TxCAD, based on annual angiography evaluations before pravastatin. Results. In the cardiac transplant recipients, the mean area under the plasma concentration-time curve of pravastatin [AUC(0-10)], 264.1 * 192.4 ng.h/mL, was nearly ten-fold higher than in the HeFH children (26.6 * 17.0 ng.h/mL). By 2, 4, 6, 12 and 24 months of treatment, the LDL cholesterol levels in the HeFH children had respectively decreased by 25%, 26%, 29%, 33%, and 32%. In the HeFH group, pravastatin treatment increased the markers of cholesterol absorption and decreased those of synthesis. High ratios of cholestanol to cholesterol were associated with the poor cholesterol-lowering efficacy of pravastatin. In cardiac transplant recipients, pravastatin 10 mg/day lowered the LDL cholesterol by approximately 19%. Compared with the patients without TxCAD, patients with TxCAD had significantly lower HDL cholesterol concentrations and higher apoB-100/apoA-I ratios at baseline (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.031; and 0.7 ± 0.2 vs. 0.5 ± 0.1, P = 0.034) and after one year of pravastatin use (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.013; and 0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). Compared with healthy controls, the transplant recipients exhibited elevated serum triglycerides at baseline (median 1.3 [range 0.6-3.2] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P=0.0002), which negatively correlated with their HDL cholesterol concentration (r = -0.523, P = 0.022). Recipients also exhibited higher apoB-100/apoA1 ratios (0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). In addition, elevated triglyceride levels were still observed after one year of pravastatin use (1.3 [0.5-3.5] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P = 0.0004). Clinically significant elevations in alanine aminotransferase, creatine kinase, or creatinine ocurred in neither group. Conclusions. Immunosuppressive medication considerably increased the plasma pravastatin concentrations. In both patient groups, pravastatin treatment was moderately effective, safe, and well tolerated. In the HeFH group, high baseline cholesterol absorption seemed to predispose patients to insufficient cholesterol-lowering efficacy of pravastatin. In the cardiac transplant recipients, low HDL cholesterol and a high apoB-100/apoA-I ratio were associated with development of TxCAD. Even though pravastatin in the transplant recipients effectively lowered serum total and LDL cholesterol concentrations, it failed to normalize their elevated triglyceride levels and, in some patients, to prevent the progression of TxCAD.
Femoral shaft fractures in adults: Epidemiology, fracture patterns, nonunions, and fatigue fractures
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.
Resumo:
Breast and colorectal cancers, are common types of cancer, with over two million newly diagnosed cases annually worldwide. Cancer is a genetic disease and defects in DNA integrity restoring functions make a significant contribution to cancer risk. CHEK2 is a checkpoint kinase functioning as a regulator of cell cycle checkpoints, apoptosis, and DNA repair in response to DNA double-strand breaks. The aim of this study was to evaluate the role of CHEK2 in breast cancer predisposition in Finnish breast cancer families and in breast cancer risk at the population level. We were interested in the clinical and biological characteristics of the breast tumors associated with the CHEK2 germline mutations or aberrant CHEK2 protein expression and the effect on survival of patients with these CHEK2 defects. We also assessed the role of CHEK2 mutations, namely 1100delC and I157T, in colorectal cancer susceptibility in Finland. CHEK2 I157T was found to be a low-penetrance breast cancer susceptibility allele, conferring a 1.4-fold risk for carriers. Reduced or absent CHEK2 protein expression was observed in one-fifth of breast tumors from patients unselected for family history, implying that defective CHEK2 signaling contributes to tumorigenesis. Reduction in CHEK2 expression was more common in tumors with larger diameter and ER expression, but with regard to other tumor characteristics and prognosis of a patient no association was observed. Results from comparison of CHEK2 1100delC carrier tumors with noncarrier tumors were in line with the findings from the CHEK2 expression study. Tumors from CHEK2 1100delC carriers were more often of higher grade than tumors from noncarriers, and they also tended to be ER-positive more often, although generally 1100delC status does not seem to radically affect the tumor characteristics. Our results suggest that CHEK2 1100delC may not be a susceptibility allele for CRC, although a very small effect cannot be excluded. Furthermore, CHEK2 1100delC is equally frequent in HBCC (hereditary breast and colorectal cancer) phenotype families and in breast cancer families. Over 1000 CRC cases were screened for CHEK2 I157T, and a significantly higher frequency of I157T was observed among both familial and sporadic CRC cases. The relation of CHEK2 I157T with familial CRC has not been studied previously. CHEK2 I157T seems to be a susceptibility allele for both familial and sporadic CRC, conferring a 1.5-fold risk for carriers of this variant. CHEK2 I157T has been proposed to have a role as a multiple cancer susceptibility allele, which is supported by our results since we observed a trend towards higher frequency of the variant among cases with multiple primary tumors or those with a family history of cancer. During the last five years CHEK2 has established its role as an important cancer susceptibility gene. It has become apparent that CHEK2 is a low-penetrance susceptibility gene for several cancer types, significantly contributing to familial cancer risk as well as to cancer risk at the population level.
Resumo:
The aim of the studies was to improve the diagnostic capability of electrocardiography (ECG) in detecting myocardial ischemic injury with a future goal of an automatic screening and monitoring method for ischemic heart disease. The method of choice was body surface potential mapping (BSPM), containing numerous leads, with intention to find the optimal recording sites and optimal ECG variables for ischemia and myocardial infarction (MI) diagnostics. The studies included 144 patients with prior MI, 79 patients with evolving ischemia, 42 patients with left ventricular hypertrophy (LVH), and 84 healthy controls. Study I examined the depolarization wave in prior MI with respect to MI location. Studies II-V examined the depolarization and repolarization waves in prior MI detection with respect to the Minnesota code, Q-wave status, and study V also with respect to MI location. In study VI the depolarization and repolarization variables were examined in 79 patients in the face of evolving myocardial ischemia and ischemic injury. When analyzed from a single lead at any recording site the results revealed superiority of the repolarization variables over the depolarization variables and over the conventional 12-lead ECG methods, both in the detection of prior MI and evolving ischemic injury. The QT integral, covering both depolarization and repolarization, appeared indifferent to the Q-wave status, the time elapsed from MI, or the MI or ischemia location. In the face of evolving ischemic injury the performance of the QT integral was not hampered even by underlying LVH. The examined depolarization and repolarization variables were effective when recorded in a single site, in contrast to the conventional 12-lead ECG criteria. The inverse spatial correlation of the depolarization and depolarization waves in myocardial ischemia and injury could be reduced into the QT integral variable recorded in a single site on the left flank. In conclusion, the QT integral variable, detectable in a single lead, with optimal recording site on the left flank, was able to detect prior MI and evolving ischemic injury more effectively than the conventional ECG markers. The QT integral, in a single-lead or a small number of leads, offers potential for automated screening of ischemic heart disease, acute ischemia monitoring and therapeutic decision-guiding as well as risk stratification.