36 resultados para maintaining contacts
Resumo:
Angiogenesis and lymphangiogenesis occur during development as the result of tightly coordinated signalling programs to generate two hierarchically organised vascular systems. All tissues and organs are dependent on a functional blood vasculature for oxygen and nutrients, whereas the lymphatic vasculature functions to collect excess tissue fluid, passing it through lymph nodes for immune surveillance, and returning it to the blood circulation. Effectors that control developmental angiogenesis and lymphangiogenesis are also involved in pathological settings, and therefore potential targets for therapy. Vascular endothelial growth factor (VEGF) and angiopoietin (Ang) growth factors, signalling through endothelial VEGFR and Tie receptors, have been established as key regulators of angiogenic and lymphangiogenic processes in development and disease. In this study, we aimed to obtain a clearer understanding of the vascular effects of stimulation by VEGF-C, Ang1 and Ang2, all known to be involved in lymphangiogenesis. In cell culture models, we found that both intrinsic and microenvironmental regulatory mechanisms are involved in the regulation of endothelial cell phenotypes, and distinct responses to VEGF signalling are induced by specific receptor pathways in different endothelial cell types. Surprisingly, we also found that Ang1 induces sprouting lymphangiogenesis in vivo by a VEGFR-3 dependent mechanism, establishing Ang1 as a novel lymphangiogenic factor. Using inducible transgenic mouse models, we found that VEGF-C-induced lymphatic hyperplasia persisted independently of the growth factor, indicating that short pro-lymphangiogenic therapy could lead to lasting improvements in tissue oedema. While VEGF-C had blood vessel effects in embryos, no angiogenic side effects were observed in adult tissues. Furthermore, inducible transgenic expression of Ang2 during embryonic development confirmed Ang2 as an important regulator of lymphatic remodelling and mural cell contacts. The unexpected similarity of the lymphatic maturation defects caused by excess Ang2 to those observed in Ang2 deficient mice demonstrated that correct doses of Ang2 are crucial for the control of lymphatic development. Unlike Ang1, Ang2 did not induce lymphatic sprouting. Although Ang1 has been shown to be able to substitute for Ang2 during developmental lymphangiogenesis, their lymphatic effects are not identical. These findings further our understanding of the basic mechanisms of angiogenesis and lymphangiogenesis, important for the future development of targeted therapies for vascular diseases such as cancer, inflammation, lymphoedema and ischemia. VEGF-C and Ang1 especially emerged as promising candidates for pro-lymphangiogenic therapy.
Resumo:
The purpose of the present study was to increase understanding of the interaction of rural people and, specifically, women with the environment in a dry area in Sudan. The study that included both nomadic pastoralists and farmers aimed at answering two main research questions, namely: What kinds of roles have the local people, and the women in particular, had in land degradation in the study area and what kinds of issues would a gender-sensitive, forestry-related environmental rehabilitation intervention need to consider there? The study adopted the definition of land degradation as proposed by the United Nations Convention to Combat Desertification (UNCCD), which describes land degradation as reduction or loss the biological or economic productivity and complexity of land in arid, semi-arid and dry sub-humid areas. The Convention perceives desertification as land degradation. The dry study area in Sudan, South of the Sahara, has been the subject of land degradation or desertification discussions since the 1970s, and other studies have been also conducted to assess the degradation in the area. Nevertheless, the exact occurrence, scale and local significance of land degradation in the area is still unclear. This study explored how the rural population whose livelihood depended on the area, perceived environmental changes occurring there and compared their conceptions with other sources of information of the area such as research reports. The main fieldwork methods included interviews with open-ended questions and observation of people and the environment. The theoretical framework conceptualised the rural population as land users whose choices of environmental activities are affected by multiple factors in the social and biophysical contexts in which they live. It was emphasised that these factors have their own specific characteristics in different contexts, simultaneously recognising that there are also factors that generally affect environmental practices in various areas such as the land users' environmental literacy (conceptions of the environment), gender and livelihood needs. The people studied described that environmental changes, such as reduced vegetation cover and cropland production, had complicated the maintenance of their livelihoods in the study area. Some degraded sites were also identified through observations during the fieldwork. Whether a large-scale reduction of cropland productivity had occurred in the farmers' croplands remained, however, unclear. The study found that the environmental impact of the rural women's activities varied and was normally limited. The women's most significant environmental impact resulted from their cutting of trees, which was likely to contribute, at least in some places, to land degradation, affecting the environment together with climate and livestock. However, when a wider perspective is taken, it becomes questionable whether the women have really played roles in land degradation, since gender, poverty and the need to maintain livelihood had caused them to conduct environmentally harmful activities. The women have had, however, no power to change the causes of their activities. The findings further suggested that an inadequate availability of food was the most critical problem in the study area. Therefore, an environmental programme in the area was suggested to include technical measures to increase the productivity of croplands, opportunities for income generation and readiness to co-operate with other programmes to improve the local people's abilities to maintain their livelihoods. In order to protect the environment and alleviate the women's work burden, the introduction of fuel-saving stoves was also suggested. Furthermore, it was suggested that increased planting of trees on homesteads would be supported by an easy availability of tree seedlings. Planting trees on common property land was, however, perceived as extremely demanding in the study area, due to scarcity of such land. In addition, it became apparent that the local land users, and women in particular, needed to allocate their labour to maintain the immediate livelihood of their families and were not motivated to allocate their labour solely for environmental rehabilitation. Nonetheless, from the point of view of the existing social structures, women's active participation in a community-based environmental programme would be rather natural, particularly among the farmer women who had already formed a women's group and participated in communal decision making. Forming of a women group or groups was suggested to further support both the farmer women's and pastoral women's active participation within an environmental programme and their general empowerment. An Environmental programme would need to acknowledge that improving rural people's well-being and maintaining their livelihood in the study area requires development and co-operation with various sectors in Sudan.
Resumo:
The aim of this study was to compare the differences between forest management incorporating energy wood thinning and forest management based on silvicultural recommendations (baseline). Energy wood thinning was substituted for young stand thinning and the first commercial thinning of industrial wood. The study was based on the forest stand data from Southern Finland, which were simulated by the MOTTI-simulator. The main interest was to find out the climatic benefits resulting from carbon sequestration and energy substitution. The value of energy wood was set to substitute it for coal as an alternative energy fuel (emission trade). Other political instruments (Kemera subsidies) were also analysed. The largest carbon dioxide emission reductions were achieved as a combination of carbon sequestration and energy substitution (on average, a 26-90 % increase in discounted present value in the beginning of rotation) compared to the baseline. Energy substitution increased emission reductions more effectively than carbon sequestration, when maintaining dense young stands. According to the study, energy wood thinning as a part of forest management was more profitable than the baseline when the value of carbon dioxide averaged more than 15 €/CO2 and other political subsidies were unchanged. Alternatively, the price of energy wood should on average exceed 21 €/m3 on the roadside in order to be profitable in the absence of political instruments. The most cost-efficient employment of energy wood thinning occured when the dominant height was 12 meters, when energy substitution was taken into account. According to alternative forest management, thinning of sapling stands could be done earlier or less intensely than thinning based on silvicultural recommendations and the present criteria of subsidies. Consequently, the first commercial thinning could be profitable to carry out either as harvesting of industrial wood or energy wood, or as integrated harvesting depending on the costs of the harvesting methods available and the price level of small-size industrial wood compared to energy wood.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.
Resumo:
Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.