35 resultados para liver tumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uveal melanoma (UM) is the second most common primary intraocular cancer worldwide. It is a relatively rare cancer, but still the second most common type of primary malignant melanoma in humans. UM is a slowly growing tumor, and gives rise to distant metastasis mainly to the liver via the bloodstream. About 40% of patients with UM die of metastatic disease within 10 years of diagnosis, irrespective of the type of treatment. During the last decade, two main lines of research have aimed to achieve enhanced understanding of the metastasis process and accurate prognosis of patients with UM. One emphasizes the characteristics of tumor cells, particularly their nucleoli, and markers of proliferation, and the other the characteristics of tumor blood vessels. Of several morphometric measurements, the mean diameter of the ten largest nucleoli (MLN) has become the most widely applied. A large MLN has consistently been associated with high likelihood of dying from UM. Blood vessels are of paramount importance in metastasis of UM. Different extravascular matrix patterns can be seen in UM, like loops and networks. This presence is associated with death from metastatic melanoma. However, the density of microvessels is also of prognostic importance. This study was undertaken to help understanding some histopathological factors which might contribute to developing metastasis in UM patients. Factors which could be related to tumor progression to metastasis disease, namely nucleolar size, MLN, microvascular density (MVD), cell proliferation, and The Insulin-like Growth Factor 1 Receptor(IGF-1R), were investigated. The primary aim of this thesis was to study the relationship between prognostic factors such as tumor cell nucleolar size, proliferation, extravascular matrix patterns, and dissemination of UM, and to assess to what extent there is a relationship to metastasis. The secondary goal was to develop a multivariate model which includes MLN and cell proliferation in addition to MVD, and which would fit better with population-based, melanoma-related survival data than previous models. I studied 167 patients with UM, who developed metastasis even after a very long time following removal of the eye, metastatic disease was the main cause of death, as documented in the Finnish Cancer Registry and on death certificates. Using an independent population-based data set, it was confirmed that MLN and extravascular matrix loops and networks were unrelated, independent predictors of survival in UM. Also, it has been found that multivariate models including MVD in addition to MLN fitted significantly better with survival data than models which excluded MVD. This supports the idea that both the characteristics of the blood vessels and the cells are important, and the future direction would be to look for the gene expression profile, whether it is associated more with MVD or MLN. The former relates to the host response to the tumor and may not be as tightly associated with the gene expression profile, yet most likely involved in the process of hematogenous metastasis. Because fresh tumor material is needed for reliable genetic analysis, such analysis could not be performed Although noninvasive detection of certain extravascular matrix patterns is now technically possible,in managing patients with UM, this study and tumor genetics suggest that such noninvasive methods will not fully capture the process of clinical metastasis. Progress in resection and biopsy techniques is likely in the near future to result in fresh material for the ophthalmic pathologist to correlate angiographic data, histopathological characteristics such as MLN, and genetic data. This study supported the theory that tumors containing epithelioid cells grow faster and have poorer prognosis when studied by cell proliferation in UM based on Ki-67 immunoreactivity. Cell proliferation index fitted best with the survival data when combined with MVD, MLN, and presence of epithelioid cells. Analogous with the finding that high MVD in primary UM is associated with shorter time to metastasis than low MVD, high MVD in hepatic metastasis tends to be associated with shorter survival after diagnosis of metastasis. Because the liver is the main organ for metastasis from UM, growth factors largely produced in the liver hepatocyte growth factor, epidermal growth factor and insulin-like growth factor-1 (IGF-1) together with their receptors may have a role in the homing and survival of metastatic cells. Therefore the association between immunoreactivity for IGF-1R in primary UM and metastatic death was studied. It was found that immunoreactivity for IGF-IR did not independently predict metastasis from primary UM in my series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syövän diagnostiikassa ja hoidossa nanopartikkelit voivat toimia kuljetinaineina lääke- ja diagnostisille aineille tai nukleiinihappojaksoille. Kantaja-aineeseen voidaan liittää kohdennusmolekyylejä partikkelien passiivista tai aktiivista kohdennusta varten tai radioleima kuvantamista tai radioterapiaa varten. Kantaja-aineiden avulla voidaan parantaa lääkeaineen fysikaalis-kemiallisia ominaisuuksia ja biologista hyötyosuutta, vähentää systeemisiä sivuvaikutuksia, pidentää lääkeaineen puoliintumisaikaa ja siten harventaa annosteluväliä, sekä parantaa lääkeaineen pääsyä kohdekudokseen. Näin voidaan parantaa kemo- ja radioterapian tehoa ja hoidon onnistumisen todennäköisyyttä. Kirjallisuuskatsauksessa perehdytään nanokantajien rooliin syövän hoidossa. Vuosikymmeniä jatkuneesta tutkimuksesta huolimatta vain kaksi (Eurooppa) tai kolme (Yhdysvallat) nanopartikkeliformulaatiota on hyväksytty markkinoille syövän hoidossa. Ongelmina ovat riittämätön hakeutuminen kohdekudokseen, immunogeenisyys ja nanopartikkelien labiilius. Kokeellisessa osassa tutkitaan in vitro ja hiirillä in vivo 99mTc-leimattujen, PEG-verhoiltujen biotiiniliposomien kaksivaiheista kohdennusta ihmisen munasarjan adenokarsinoomasoluihin. Kohdentamiseen käytetään biotinyloitua setuksimabi-(Erbitux®) vasta-ainetta, joka sitoutuu solujen yli-ilmentämiin EGF-reseptoreihin. Kaksivaiheista kohdennusta verrataan suoraan ja/tai passiiviseen kohdennukseen. Tehokkaampien kuvantamismenetelmien kehitys on vauhdittanut kohdennettujen nanopartikkelien tutkimusta. Isotooppikuvantamista käyttäen pystytään seuraamaan radioleiman jakautumista elimistössä ja kuvantamaan solutasolla tapahtuvia ilmiöitä. Kirjallisuuskatsauksessa perehdytään SPECT- ja PET-kuvantamiseen syövän hoidossa, sekä niiden hyödyntämiseen lääkekehityksessä nanopartikkelien kuvantamisessa. Kyseiset kuvantamismenetelmät erottuvat muista menetelmistä korkean erotuskyvyn, herkkyyden ja helppokäyttöisyyden suhteen. Kokeellisessa osassa 99mTc-leimattujen liposomien distribuutiota hiirissä tutkittiin SPECT-CT-laitteen avulla. Aktiivisuus kasvaimessa, pernassa ja maksassa kvantifioitiin InVivoScope-ohjelman ja gammalaskijan avulla. Tuloksia verrattiin keskenään. In vitro-kokeessa saavutettiin kaksivaiheisella kohdennuksella 2,7- 3,5-kertainen (solulinjasta riippuen) hakeutuminen soluihin kontrolliliposomeihin verrattuna. Kuitenkin suora kohdennus toimi kaksivaiheista kohdennusta paremmin in vitro. In vivo –kokeissa liposomit jakautuivat kasvaimeen tehokkaammin i.p.-annosteltuna kuin i.v.-annosteltuna. Kaksivaiheisella kohdennuksella saavutettiin 1,24-kertainen jakautuminen kasvaimeen (% ID/g kudosta) passiivisesti kohdennettuihin liposomeihin verrattuna. %ID/elin oli kohdennetuilla liposomeilla 5,9 % ja passiivisesti kohdennetuilla 5,4%. Todellinen ero oli siis pieni. InVivoScope:n ja gammalaskijan tulokset eivät korreloineet keskenään. Lisätutkimuksia ja menetelmän optimointia vaaditaan liposomien kohdennuksessa kasvaimeen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.