103 resultados para hep
Resumo:
Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.
Resumo:
We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy √s=1.96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb-1 collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence level in the stop quark versus sneutrino mass plane are set. Stop quark masses up to 180 GeV/c2 are excluded for sneutrino masses around 45 GeV/c2, and sneutrino masses up to 116 GeV/c2 are excluded for stop quark masses around 150 GeV/c2.
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to probe top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
We show that the dynamical Wigner functions for noninteracting fermions and bosons can have complex singularity structures with a number of new solutions accompanying the usual mass-shell dispersion relations. These new shell solutions are shown to encode the information of the quantum coherence between particles and antiparticles, left and right moving chiral states and/or between different flavour states. Analogously to the usual derivation of the Boltzmann equation, we impose this extended phase space structure on the full interacting theory. This extension of the quasiparticle approximation gives rise to a self-consistent equation of motion for a density matrix that combines the quantum mechanical coherence evolution with a well defined collision integral giving rise to decoherence. Several applications of the method are given, for example to the coherent particle production, electroweak baryogenesis and study of decoherence and thermalization.
Resumo:
We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the llll channel, we observe three ZZ candidates with an expected background of 0.096^{+0.092}_{-0.063} events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of llll and llnunu channels, we observe an excess of events with a probability of $5.1\times 10^{-6}$ to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(ppbar -> ZZ) = 1.4^{+0.7}_{-0.6} (stat.+syst.) pb, consistent with the standard model expectation.
Resumo:
This article presents the first measurement of the ratio of branching fractions B(Λb0→Λc+μ-ν̅ μ)/B(Λb0→Λc+π-). Measurements in two control samples using the same technique B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-) and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb-1 of pp̅ collisions at √s=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be B(Λb0→Λc+μ-ν̅ μ)/B(Λb0→Λc+π-)=16.6±3.0(stat)±1.0(syst)+2.6/-3.4(PDG)±0.3(EBR), B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-)= 9.9±1.0(stat)±0.6(syst)±0.4(PDG)±0.5(EBR), and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-)=16.5±2.3(stat)± 0.6(syst)±0.5(PDG)±0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new Λb0 semileptonic decays: Λb0→Λc(2595)+μ-ν̅ μ, Λb0→Λc(2625)+μ-ν̅ μ, Λb0→Σc(2455)0π+μ-ν̅ μ, and Λb0→Σc(2455)++π-μ-ν̅ μ, relative to the branching fraction of the Λb0→Λc+μ-ν̅ μ decay. Finally, the transverse-momentum distribution of Λb0 baryons produced in pp̅ collisions is measured and found to be significantly different from that of B̅ 0 mesons, which results in a modification in the production cross-section ratio σΛb0/σB̅ 0 with respect to the CDF I measurement.
Resumo:
We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0.88 +0.13 -0.12 (stat+sys) +- 0.07(theory), and set the limit |V_{tb}|>0.66 at the 95% C.L.
Resumo:
A combined mass and particle identification fit is used to make the first observation of the decay B̅ s0→Ds±K∓ and measure the branching fraction of B̅ s0→Ds±K∓ relative to B̅ s0→Ds+π-. This analysis uses 1.2 fb-1 integrated luminosity of pp̅ collisions at √s=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a B̅ s0→Ds±K∓ signal with a statistical significance of 8.1σ and measure B(B̅ s0→Ds±K∓)/B(B̅ s0→Ds+π-)=0.097±0.018(stat)±0.009(syst).
Resumo:
We search for b→sμ+μ- transitions in B meson (B+, B0, or Bs0) decays with 924 pb-1 of pp̅ collisions at √s=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We find excesses with significances of 4.5, 2.9, and 2.4 standard deviations in the B+→μ+μ-K+, B0→μ+μ-K*(892)0, and Bs0→μ+μ-ϕ decay modes, respectively. Using B→J/ψh (h=K+, K*(892)0, ϕ) decays as normalization channels, we report branching fractions for the previously observed B+ and B0 decays, B(B+→μ+μ-K+)=(0.59±0.15±0.04)×10-6, and B(B0→μ+μ-K*(892)0)=(0.81±0.30±0.10)×10-6, where the first uncertainty is statistical, and the second is systematic. We set an upper limit on the relative branching fraction B(Bs0→μ+μ-ϕ)/B(Bs0→J/ψϕ)<2.6(2.3)×10-3 at the 95(90)% confidence level, which is the most stringent to date.
Resumo:
We construct dark soliton solutions in a holographic model of a relativistic superfluid. We study the length scales associated with the condensate and the charge density depletion, and find that the two scales differ by a non-trivial function of the chemical potential. By adjusting the chemical potential, we study the variation of the depletion of charge density at the interface.
Resumo:
We compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.
Resumo:
We begin an investigation of inhomogeneous structures in holographic superfluids. As a first example, we study domain wall like defects in the 3+1 dimensional Einstein-Maxwell-Higgs theory, which was developed as a dual model for a holographic superconductor. In [1], we reported on such "dark solitons" in holographic superfluids. In this work, we present an extensive numerical study of their properties, working in the probe limit. We construct dark solitons for two possible condensing operators, and find that both of them share common features with their standard superfluid counterparts. However, both are characterized by two distinct coherence length scales (one for order parameter, one for charge condensate). We study the relative charge depletion factor and find that solitons in the two different condensates have very distinct depletion characteristics. We also study quasiparticle excitations above the holographic superfluid, and find that the scale of the excitations is comparable to the soliton coherence length scales.
Resumo:
A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.
Resumo:
We present the first direct measurement of the $W$ production charge asymmetry as a function of the $W$ boson rapidity $\yW$ in $\ppbar$ collisions at $\sqrt{s} = 1.96$ $\TeV$. We use a sample of $\wenu$ events in data from 1 $\ifb$ of integrated luminosity collected using the CDF II detector. In the region $|\yW|