34 resultados para data-basemanagement
Resumo:
Cell transition data is obtained from a cellular phone that switches its current serving cell tower. The data consists of a sequence of transition events, which are pairs of cell identifiers and transition times. The focus of this thesis is applying data mining methods to such data, developing new algorithms, and extracting knowledge that will be a solid foundation on which to build location-aware applications. In addition to a thorough exploration of the features of the data, the tools and methods developed in this thesis provide solutions to three distinct research problems. First, we develop clustering algorithms that produce a reliable mapping between cell transitions and physical locations observed by users of mobile devices. The main clustering algorithm operates in online fashion, and we consider also a number of offline clustering methods for comparison. Second, we define the concept of significant locations, known as bases, and give an online algorithm for determining them. Finally, we consider the task of predicting the movement of the user, based on historical data. We develop a prediction algorithm that considers paths of movement in their entirety, instead of just the most recent movement history. All of the presented methods are evaluated with a significant body of real cell transition data, collected from about one hundred different individuals. The algorithms developed in this thesis are designed to be implemented on a mobile device, and require no extra hardware sensors or network infrastructure. By not relying on external services and keeping the user information as much as possible on the user s own personal device, we avoid privacy issues and let the users control the disclosure of their location information.
Resumo:
The increased accuracy in the cosmological observations, especially in the measurements of the comic microwave background, allow us to study the primordial perturbations in grater detail. In this thesis, we allow the possibility for a correlated isocurvature perturbations alongside the usual adiabatic perturbations. Thus far the simplest six parameter \Lambda CDM model has been able to accommodate all the observational data rather well. However, we find that the 3-year WMAP data and the 2006 Boomerang data favour a nonzero nonadiabatic contribution to the CMB angular power sprctrum. This is primordial isocurvature perturbation that is positively correlated with the primordial curvature perturbation. Compared with the adiabatic \Lambda CMD model we have four additional parameters describing the increased complexity if the primordial perturbations. Our best-fit model has a 4% nonadiabatic contribution to the CMB temperature variance and the fit is improved by \Delta\chi^2 = 9.7. We can attribute this preference for isocurvature to a feature in the peak structure of the angular power spectrum, namely, the widths of the second and third acoustic peak. Along the way, we have improved our analysis methods by identifying some issues with the parametrisation of the primordial perturbation spectra and suggesting ways to handle these. Due to the improvements, the convergence of our Markov chains is improved. The change of parametrisation has an effect on the MCMC analysis because of the change in priors. We have checked our results against this and find only marginal differences between our parametrisation.
Resumo:
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.
Resumo:
Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.