68 resultados para carbon credit markets
Resumo:
The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.
Resumo:
Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.
Resumo:
The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.
Resumo:
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.
Resumo:
A theoretical framework of the link between climate change, rural development, sustainable agriculture, poverty, and food security is presented. Some options to respond to climate change are described. Current knowledge and potential effects on agricultural productivity is discussed. Necessary conditions for successful adaptation includes secured property rights to land, institutions that make market access possible and credit possibilities. The options of mitigation and enhanced adaptive capacity and the requirements for their implementation are discussed.
Resumo:
At present the operating environment of sawmills in Europe is changing and there are uncertainties related in raw material supply in many countries. The changes in the operating environment of roundwood markets and the effects followed by these changes have brought up several interesting issues from the viewpoint of research. Lately new factors have been influencing the roundwood markets, such as increasing interest towards wood-based energy and implementation of new energy policies as well as changes in wood trade flows that affect the domestic markets in many countries. This Master’s thesis studies the adaptation ability of Finnish roundwood markets in a changing operating environment, aiming to produce an up-to-date analysis considering new development trends. The study concentrates on the roundwood markets from the viewpoint of sawmill industry since the industry is dependent on the functioning of the markets and sawmills are highly affected by the changes on the roundwood markets. To facilitate international comparison, the study is implemented by comparing Finnish and Austrian roundwood markets and analysing changes happening in the two countries. Finland and Austria share rather similar characteristics in the roundwood market structures, forest resources and forest ownership as well as production of roundwood and sawnwood. In addition they both are big exporters of forest industry products. In this study changes in the operating environment of sawmill industry both in Finland as well as in Austria are compared to each other aiming to recognise the main similarities and differences between the countries. In addition both development possibilities as well as challenges followed by the changes are discussed. The aim of the study is to define the main challenges and possibilities confronted by the actors on the markets and also to find new perspectives to approach these. The study is implemented as a qualitative study. The theoretical framework of the study describes the operating environment of wood markets from the viewpoint of the sawmill industry and represents the effects of supply and demand on the wood markets. The primary research material of the study was gathered by interviewing high level experts of forestry and sawmill industry in both Finland and Austria. The aim was to receive as extensive country specific viewpoint from the markets as possible, hence interviewees represented different parties of the markets. After creating country-specific profiles based on the theoretical framework a cross-country comparison was implemented. As a consequence the main similarities and differences in the operating environment and on the roundwood markets of Finland and Austria were recognized. In addition the main challenges and possibilites were identified. The results of the study offer a wide analysis regarding the main similarities and differences of the wood markets of Finland and Austria and their operating environments as well as concerning challenges and possibilities faced on the markets.
Resumo:
The liquidity crisis that swept through the financial markets in 2007 triggered multi-billion losses and forced buyouts of some large banks. The resulting credit crunch is sometimes compared to the great recession in the early twentieth century. But the crisis also serves as a reminder of the significance of the interbank market and of proper central bank policy in this market. This thesis deals with implementation of monetary policy in the interbank market and examines how central bank tools affect commercial banks' decisions. I answer the following questions: • What is the relationship between the policy setup and interbank interest rate volatility? (averaging reserve requirement reduces the volatility) • What can explain a weak relationship between market liquidity and the interest rate? (high reserve requirement buffer) • What determines banks' decisions on when to satisfy the reserve requirement? (market frictions) • How did the liquidity crisis that began in 2007 affect interbank market behaviour? (resulted in higher credit risk and trading frictions as well as expected liquidity shortage)
Resumo:
The increased availability of high frequency data sets have led to important new insights in understanding of financial markets. The use of high frequency data is interesting and persuasive, since it can reveal new information that cannot be seen in lower data aggregation. This dissertation explores some of the many important issues connected with the use, analysis and application of high frequency data. These include the effects of intraday seasonal, the behaviour of time varying volatility, the information content of various market data, and the issue of inter market linkages utilizing high frequency 5 minute observations from major European and the U.S stock indices, namely DAX30 of Germany, CAC40 of France, SMI of Switzerland, FTSE100 of the UK and SP500 of the U.S. The first essay in the dissertation shows that there are remarkable similarities in the intraday behaviour of conditional volatility across European equity markets. Moreover, the U.S macroeconomic news announcements have significant cross border effect on both, European equity returns and volatilities. The second essay reports substantial intraday return and volatility linkages across European stock indices of the UK and Germany. This relationship appears virtually unchanged by the presence or absence of the U.S stock market. However, the return correlation among the U.K and German markets rises significantly following the U.S stock market opening, which could largely be described as a contemporaneous effect. The third essay sheds light on market microstructure issues in which traders and market makers learn from watching market data, and it is this learning process that leads to price adjustments. This study concludes that trading volume plays an important role in explaining international return and volatility transmissions. The examination concerning asymmetry reveals that the impact of the positive volume changes is larger on foreign stock market volatility than the negative changes. The fourth and the final essay documents number of regularities in the pattern of intraday return volatility, trading volume and bid-ask spreads. This study also reports a contemporaneous and positive relationship between the intraday return volatility, bid ask spread and unexpected trading volume. These results verify the role of trading volume and bid ask quotes as proxies for information arrival in producing contemporaneous and subsequent intraday return volatility. Moreover, asymmetric effect of trading volume on conditional volatility is also confirmed. Overall, this dissertation explores the role of information in explaining the intraday return and volatility dynamics in international stock markets. The process through which the information is incorporated in stock prices is central to all information-based models. The intraday data facilitates the investigation that how information gets incorporated into security prices as a result of the trading behavior of informed and uninformed traders. Thus high frequency data appears critical in enhancing our understanding of intraday behavior of various stock markets’ variables as it has important implications for market participants, regulators and academic researchers.
Resumo:
During the last few decades there have been far going financial market deregulation, technical development, advances in information technology, and standardization of legislation between countries. As a result, one can expect that financial markets have grown more interlinked. The proper understanding of the cross-market linkages has implications for investment and risk management, diversification, asset pricing, and regulation. The purpose of this research is to assess the degree of price, return, and volatility linkages between both geographic markets and asset categories within one country, Finland. Another purpose is to analyze risk asymmetries, i.e., the tendency of equity risk to be higher after negative events than after positive events of equal magnitude. The analysis is conducted both with respect to total risk (volatility), and systematic risk (beta). The thesis consists of an introductory part and four essays. The first essay studies to which extent international stock prices comove. The degree of comovements is low, indicating benefits from international diversification. The second essay examines the degree to which the Finnish market is linked to the “world market”. The total risk is divided into two parts, one relating to world factors, and one relating to domestic factors. The impact of world factors has increased over time. After 1993, when foreign investors were allowed to freely invest in Finnish assets, the risk level has been higher than previously. This was also the case during the economic recession in the beginning of the 1990’s. The third essay focuses on the stock, bond, and money markets in Finland. According to a trading model, the degree of volatility linkages should be strong. However, the results contradict this. The linkages are surprisingly weak, even negative. The stock market is the most independent, while the money market is affected by events on the two other markets. The fourth essay concentrates on volatility and beta asymmetries. Contrary to many international studies there are only few cases of risk asymmetries. When they occur, they tend to be driven by the market-wide component rather than the portfolio specific element.
Resumo:
Financing trade between economic agents located in different countries is affected by many types of risks, resulting from incomplete information about the debtor, the problems of enforcing international contracts, or the prevalence of political and financial crises. Trade is important for economic development and the availability of trade finance is essential, especially for developing countries. Relatively few studies treat the topic of political risk, particularly in the context of international lending. This thesis explores new ground to identify links between political risk and international debt defaults. The core hypothesis of the study is that the default probability of debt increases with increasing political risk in the country of the borrower. The thesis consists of three essays that support the hypothesis from different angles of the credit evaluation process. The first essay takes the point of view of an international lender assessing the credit risk of a public borrower. The second investigates creditworthiness assessment of companies. The obtained results are substantiated in the third essay that deals with an extensive political risk survey among finance professionals in developing countries. The financial instruments of core interest are export credit guaranteed debt initiated between the Export Credit Agency of Finland and buyers in 145 countries between 1975 and 2006. Default events of the foreign credit counterparts are conditioned on country-specific macroeconomic variables, corporate-specific accounting information as well as political risk indicators from various international sources. Essay 1 examines debt issued to government controlled institutions and conditions public default events on traditional macroeconomic fundamentals, in addition to selected political and institutional risk factors. Confirming previous research, the study finds country indebtedness and the GDP growth rate to be significant indicators of public default. Further, it is shown that public defaults respond to various political risk factors. However, the impact of the risk varies between countries at different stages of economic development. Essay 2 proceeds by investigating political risk factors as conveivable drivers of corporate default and uses traditional accounting variables together with new political risk indicators in the credit evaluation of private debtors. The study finds links between corporate default and leverage, as well as between corporate default and the general investment climate and measeures of conflict in the debtor country. Essay 3 concludes the thesis by offering survey evidence on the impact of political risk on debt default, as perceived and experienced by 103 finance professionals in 38 developing countries. Taken together, the results of the thesis suggest that various forms of political risk are associated with international debt defaults and continue to pose great concerns for both international creditors and borrowers in developing countries. The study provides new insights on the importance of variable selection in country risk analysis, and shows how political risk is actually perceived and experienced in the riskier, often lower income countries of the global economy.