59 resultados para activity budget


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) are secreted proteins which promote the survival of neurons, formation and maintenance of neuronal contacts and regulate synaptic plasticity. NTFs are also potential drug candidates for the treatment of neurodegenerative diseases. Parkinson’s disease (PD) is mainly caused by the degeneration of midbrain dopaminergic neurons. Current therapies for PD do not stop the neurodegeneration or repair the affected neurons. Thus, search of novel neurotrophic factors for midbrain dopaminergic neurons, which could also be used as therapeutic proteins, is highly warranted. In the present study, we identified and characterized a novel protein named conserved dopamine neurotrophic factor (CDNF), a homologous protein to mesencephalic astrocyte-derived neurotrophic factor (MANF). Others have shown that MANF supports the survival of embryonic midbrain dopaminergic neurons in vitro, and protects cultured cells against endoplasmic reticulum (ER) stress. CDNF and MANF form a novel evolutionary conserved protein family with characteristic eight conserved cysteine residues in their primary structure. The vertebrates have CDNF and MANF encoding genes, whereas the invertebrates, including Drosophila and Caenorhabditis have a single homologous CDNF/MANF gene. In this study we show that CDNF and MANF are secreted proteins. They are widely expressed in the mammalian brain, including the midbrain and striatum, and in several non-neuronal tissues. We expressed and purified recombinant human CDNF and MANF proteins, and tested the neurotrophic activity of CDNF on midbrain dopaminergic neurons using a 6-hydroxydopamine (6-OHDA) rat model of PD. In this model, a single intrastriatal injection of CDNF protected midbrain dopaminergic neurons and striatal dopaminergic fibers from the 6-OHDA toxicity. Importantly, an intrastriatal injection of CDNF also restored the functional activity of the nigrostriatal dopaminergic system when given after the striatal 6-OHDA lesion. Thus, our study shows that CDNF is a potential novel therapeutic protein for the treatment of PD. In order to elucidate the molecular mechanisms of CDNF and MANF activity, we resolved their crystal structure. CDNF and MANF proteins have two domains; an amino (N)-terminal saposin-like domain and a presumably unfolded carboxy (C)-terminal domain. The saposin-like domain, which is formed by five α-helices and stabilized by three intradomain disulphide bridges, may bind to lipids or membranes. The C-terminal domain contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus facilitate protein folding in the ER. Our studies suggest that CDNF and MANF are novel potential therapeutic proteins for the treatment of neurodegenerative diseases. Future studies will reveal the neurotrophic and cytoprotective mechanisms of CDNF and MANF in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial activity in soils is the main source of nitrous oxide (N2O) to the atmosphere. Nitrous oxide is a strong greenhouse gas in the troposphere and participates in ozone destructive reactions in the stratosphere. The constant increase in the atmospheric concentration, as well as uncertainties in the known sources and sinks of N2O underline the need to better understand the processes and pathways of N2O in terrestrial ecosystems. This study aimed at quantifying N2O emissions from soils in northern Europe and at investigating the processes and pathways of N2O from agricultural and forest ecosystems. Emissions were measured in forest ecosystems, agricultural soils and a landfill, using the soil gradient, chamber and eddy covariance methods. Processes responsible for N2O production, and the pathways of N2O from the soil to the atmosphere, were studied in the laboratory and in the field. These ecosystems were chosen for their potential importance to the national and global budget of N2O. Laboratory experiments with boreal agricultural soils revealed that N2O production increases drastically with soil moisture content, and that the contribution of the nitrification and denitrification processes to N2O emissions depends on soil type. Laboratory study with beech (Fagus sylvatica) seedlings demonstrated that trees can serve as conduits for N2O from the soil to the atmosphere. If this mechanism is important in forest ecosystems, the current emission estimates from forest soils may underestimate the total N2O emissions from forest ecosystems. Further field and laboratory studies are needed to evaluate the importance of this mechanism in forest ecosystems. The emissions of N2O from northern forest ecosystems and a municipal landfill were highly variable in time and space. The emissions of N2O from boreal upland forest soil were among the smallest reported in the world. Despite the low emission rates, the soil gradient method revealed a clear seasonal variation in N2O production. The organic topsoil was responsible for most of the N2O production and consumption in this forest soil. Emissions from the municipal landfill were one to two orders of magnitude higher than those from agricultural soils, which are the most important source of N2O to the atmosphere. Due to their small areal coverage, landfills only contribute minimally to national N2O emissions in Finland. The eddy covariance technique was demonstrated to be useful for measuring ecosystem-scale emissions of N2O in forest and landfill ecosystems. Overall, more measurements and integration between different measurement techniques are needed to capture the large variability in N2O emissions from natural and managed northern ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The fecal neutrophil-derived proteins calprotectin and lactoferrin have proven useful surrogate markers of intestinal inflammation. The aim of this study was to compare fecal calprotectin and lactoferrin concentrations to clinically, endoscopically, and histologically assessed Crohn’s disease (CD) activity, and to explore the suitability of these proteins as surrogate markers of mucosal healing during anti-TNFα therapy. Furthermore, we studied changes in the number and expression of effector and regulatory T cells in bowel biopsy specimens during anti-TNFα therapy. Patients and methods: Adult CD patients referred for ileocolonoscopy (n=106 for 77 patients) for various reasons were recruited (Study I). Clinical disease activity was assessed with the Crohn’s disease activity index (CDAI) and endoscopic activity with both the Crohn’s disease index of severity (CDEIS) and the simple endoscopic score for Crohn’s disease (SES-CD). Stool samples for measurements of calprotectin and lactoferrin, and blood samples for CRP were collected. For Study II, biopsy specimens were obtained from the ileum and the colon for histologic activity scoring. In prospective Study III, after baseline ileocolonoscopy, 15 patients received induction with anti-TNFα blocking agents and endoscopic, histologic, and fecal-marker responses to therapy were evaluated at 12 weeks. For detecting changes in the number and expression of effector and regulatory T cells, biopsy specimens were taken from the most severely diseased lesions in the ileum and the colon (Study IV). Results: Endoscopic scores correlated significantly with fecal calprotectin and lactoferrin (p<0.001). Both fecal markers were significantly lower in patients with endoscopically inactive than with active disease (p<0.001). In detecting endoscopically active disease, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for calprotectin ≥200 μg/g were 70%, 92%, 94%, and 61%; for lactoferrin ≥10 μg/g they were 66%, 92%, 94%, and 59%. Accordingly, the sensitivity, specificity, PPV, and NPV for CRP >5 mg/l were 48%, 91%, 91%, and 48%. Fecal markers were significantly higher in active colonic (both p<0.001) or ileocolonic (calprotectin p=0.028, lactoferrin p=0.004) than in ileal disease. In ileocolonic or colonic disease, colon histology score correlated significantly with fecal calprotectin (r=0.563) and lactoferrin (r=0.543). In patients receiving anti-TNFα therapy, median fecal calprotectin decreased from 1173 μg/g (range 88-15326) to 130 μg/g (13-1419) and lactoferrin from 105.0 μg/g (4.2-1258.9) to 2.7 μg/g (0.0-228.5), both p=0.001. The relation of ileal IL-17+ cells to CD4+ cells decreased significantly during anti-TNF treatment (p=0.047). The relation of IL-17+ cells to Foxp3+ cells was higher in the patients’ baseline specimens than in their post-treatment specimens (p=0.038). Conclusions: For evaluation of CD activity, based on endoscopic findings, more sensitive surrogate markers than CDAI and CRP were fecal calprotectin and lactoferrin. Fecal calprotectin and lactoferrin were significantly higher in endoscopically active disease than in endoscopic remission. In both ileocolonic and colonic disease, fecal markers correlated closely with histologic disease activity. In CD, these neutrophil-derived proteins thus seem to be useful surrogate markers of endoscopic activity. During anti-TNFα therapy, fecal calprotectin and lactoferrin decreased significantly. The anti-TNFα treatment was also reflected in a decreased IL-17/Foxp3 cell ratio, which may indicate improved balance between effector and regulatory T cells with treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long QT syndrome is a congenital or acquired arrhythmic disorder which manifests as a prolonged QT-interval on the electrocardiogram and as a tendency to develop ventricular arrhythmias which can lead to sudden death. Arrhythmias often occur during intense exercise and/or emotional stress. The two most common subtypes of LQTS are LQT1, caused by mutations in the KCNQ1 gene and LQT2, caused by mutations in the KCNH2 gene. LQT1 and LQT2 patients exhibit arrhythmias in different types of situations: in LQT1 the trigger is usually vigorous exercise whereas in LQT2 arrhythmia results from the patient being startled from rest. It is not clear why trigger factors and clinical outcome differ from each other in the different LQTS subtypes. It is possible that stress hormones such as catecholamines may show different effects depending on the exact nature of the genetic defect, or sensitivity to catecholamines varies from subject to subject. Furthermore, it is possible that subtle genetic variants of putative modifier genes, including those coding for ion channels and hormone receptors, play a role as determinants of individual sensitivity to life-threatening arrhythmias. The present study was designed to identify some of these risk modifiers. It was found that LQT1 and LQT2 patients show an abnormal QT-adaptation to both mental and physical stress. Furthermore, as studied with epinephrine infusion experiments while the heart was paced and action potentials were measured from the right ventricular septum, LQT1 patients showed repolarization abnormalities which were related to their propensity to develop arrhythmia during intense, prolonged sympathetic tone, such as exercise. In LQT2 patients, this repolarization abnormality was noted already at rest corresponding to their arrhythmic episodes as a result of intense, sudden surges in adrenergic tone, such as fright or rage. A common KCNH2 polymorphism was found to affect KCNH2 channel function as demonstrated by in vitro experiments utilizing mammalian cells transfected with the KCNH2 potassium channel as well as QT-dynamics in vivo. Finally, the present study identified a common β-1-adrenergic receptor genotype that is related a shorter QT-interval in LQT1 patients. Also, it was discovered that compound homozygosity for two common β-adrenergic polymorphisms was related to the occurrence of symptoms in the LQT1 type of long QT syndrome. The studies demonstrate important genotype-phenotype differences between different LQTS subtypes and suggest that common modifier gene polymorphisms may affect cardiac repolarization in LQTS. It will be important in the future to prospectively study whether variant gene polymorphisms will assist in clinical risk profiling of LQTS patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soy-derived phytoestrogen genistein and 17β-estradiol (E2), the principal endogenous estrogen in women, are also potent antioxidants protecting LDL and HDL lipoproteins against oxidation. This protection is enhanced by esterification with fatty acids, resulting in lipophilic molecules that accumulate in lipoproteins or fatty tissues. The aims were to investigate, whether genistein becomes esterified with fatty acids in human plasma accumulating in lipoproteins, and to develop a method for their quantitation; to study the antioxidant activity of different natural and synthetic estrogens in LDL and HDL; and to determine the E2 esters in visceral and subcutaneous fat in late pregnancy and in pre- and postmenopause. Human plasma was incubated with [3H]genistein and its esters were analyzed from lipoprotein fractions. Time-resolved fluoroimmunoassay (TR-FIA) was used to quantitate genistein esters in monkey plasma after subcutaneous and oral administration. The E2 esters in women s serum and adipose tissue were also quantitated using TR-FIA. The antioxidant activity of estrogen derivatives (n=43) on LDL and HDL was assessed by monitoring the copper induced formation of conjugated dienes. Human plasma was shown to produce lipoprotein-bound genistein fatty acid esters, providing a possible explanation for the previously reported increased oxidation resistance of LDL particles during intake of soybean phytoestrogens. Genistein esters were introduced into blood by subcutaneous administration. The antioxidant effect of estrogens on lipoproteins is highly structure-dependent. LDL and HDL were protected against oxidation by many unesterified, yet lipophilic derivatives. The strongest antioxidants had an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups. E2 ester levels were high during late pregnancy. The median concentration of E2 esters in pregnancy serum was 0.42 nmol/l (n=13) and in pre- (n=8) and postmenopause (n=6) 0.07 and 0.06 nmol/l, respectively. In pregnancy visceral fat the concentration of E2 esters was 4.24 nmol/l and in pre- and postmenopause 0.82 and 0.74 nmol/l. The results from subcutaneous fat were similar. In serum and fat during pregnancy, E2 esters constituted about 0.5 and 10% of the free E2. In non-pregnant women most of the E2 in fat was esterified (the ester/free ratio 150 - 490%). In postmenopause, E2 levels in fat highly exceeded those in serum, the majority being esterified. The pathways for fatty acid esterification of steroid hormones are found in organisms ranging from invertebrates to vertebrates. The evolutionary preservation and relative abundance of E2 esters, especially in fat tissue, suggest a biological function, most likely in providing a readily available source of E2. The body s own estrogen reservoir could be used as a source of E2 by pharmacologically regulating the E2 esterification or hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.