33 resultados para TROPHIC CASCADES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humic lakes are abundant in the temperate and cold regions of the Boreal Zone. High levels of water colour and strong thermal stratification of humic lakes limit the potential fish habitats and give a special role to the intraspecific and interspecific interactions. Water colour has different effects on species depending on species-specific life-history traits and trophic interactions. Fish species whose success in predation is based on visual cues are more susceptible to suffer in competition. The main aim of the thesis was to demonstrate the effects of water colour on European perch (Perca fluviatilis) in humic lakes. The contribution of water colour to diet, feeding, growth and competitive interactions of fish was studied both in laboratory and in small humic lakes with varying levels of water colour. The main findings of the thesis were that water colour has different effects on species, depending on species-specific life-history traits and trophic interactions. Water colour affected visually-oriented perch feeding and growth negatively, and the prolonged benthic feeding phase of perch resulting from the increased water colour could increase intraspecific competition in perch populations and may result in a partial bottleneck in growth for perch. Moreover, water colour may act as a proximate factor behind the population dependency of sexual growth dimorphism in perch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In lake-rich regions, the gathering of information about water quality is challenging because only a small proportion of the lakes can be assessed each year by conventional methods. One of the techniques for improving the spatial and temporal representativeness of lake monitoring is remote sensing from satellites and aircrafts. The experimental material included detailed optical measurements in 11 lakes, air- and spaceborne remote sensing measurements with concurrent field sampling, automatic raft measurements and a national dataset of routine water quality measurements from over 1100 lakes. The analyses of the spatially high-resolution airborne remote sensing data from eutrophic and mesotrophic lakes showed that one or a few discrete water quality observations using conventional monitoring can yield a clear over- or underestimation of the overall water quality in a lake. The use of TM-type satellite instruments in addition to routine monitoring results substantially increases the number of lakes for which water quality information can be obtained. The preliminary results indicated that coloured dissolved organic matter (CDOM) can be estimated with TM-type satellite instruments, which could possibly be utilised as an aid in estimating the role of lakes in global carbon budgets. Based on the results of reflectance modelling and experimental data, MERIS satellite instrument has optimal or near-optimal channels for the estimation of turbidity, chlorophyll a and CDOM in Finnish lakes. MERIS images with a 300 m spatial resolution can provide water quality information in different parts of large and medium-sized lakes, and in filling in the gaps resulting from conventional monitoring. Algorithms that would not require simultaneous field data for algorithm training would increase the amount of remote sensing-based information available for lake monitoring. The MERIS Boreal Lakes processor, trained with the optical data and concentration ranges provided by this study, enabled turbidity estimations with good accuracy without the need for algorithm correction with field measurements, while chlorophyll a and CDOM estimations require further development of the processor. The accuracy of interpreting chlorophyll a via semi empirical algorithms can be improved by classifying lakes prior to interpretation according to their CDOM level and trophic status. Optical modelling indicated that the spectral diffuse attenuation coefficient can be estimated with reasonable accuracy from the measured water quality concentrations. This provides more detailed information on light attenuation from routine monitoring measurements than is available through the Secchi disk transparency. The results of this study improve the interpretation of lake water quality by remote sensing and encourage the use of remote sensing in lake monitoring.