43 resultados para Spin Resonance Experiments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are, in developed countries, the leading cause of mortality. The majority of premature deaths and disability caused by CVD are due to atherosclerosis, a degenerating inflammatory disease affecting arterial walls. Early identification of lesions and initiation of treatment is crucial because the first manifestations quite often are major disabling cardiovascular events. Methods of finding individuals at high risk for these events are under development. Because magnetic resonance imaging (MRI) is an excellent non-invasive tool to study the structure and function of vascular system, we sought to discover whether existing MRI methods are able to show any difference in aortic and intracranial atherosclerotic lesions between patients at high risk for atherosclerosis and healthy controls. Our younger group (age 6-48) comprised 39 symptomless familial hypercholesterolemia (FH) patients and 25 healthy controls. Our older group (age 48-64) comprised 19 FH patients and 18 type 2 diabetes mellitus (DM) patients with coronary heart disease (CHD) and 29 healthy controls. Intracranial and aortic MRI was compared with carotid and femoral ultrasound (US). In neither age-group did MRI reveal any difference in the number of ischemic brain lesions or white matter hyperintensities (WMHIs) - possible signs of intracranial atherosclerosis - between patients and controls. Furthermore, MRI showed no difference in the structure or function of the aorta between FH patients and controls in either group. DM patients had lower compliance of the aorta than did controls, while no difference appeared between DM and FH patients. However, ultrasound showed greater plaque burden and increased thickness of carotid arterial walls in FH and DM patients in both age-groups, suggesting a more advanced atherosclerosis. The mortality of FH patients has decreased substantially after the late 1980´s when statin treatment became available. With statins, the progression of atherosclerotic lesions slows. We think that this, in concert with improvements in treatment of other risk factors, is one reason for the lack of differences between FH patients and controls in MRI measurements of the aorta and brain despite the more advanced disease of the carotid arteries assessed with US. Furthermore, whereas atherosclerotic lesions between different vascular territories correlate, differences might still exist in the extent and location of these lesions among different diseases. Small (<5 mm in diameter) WMHIs are more likely a phenomenon related to aging, but the larger ones may be the ones related to CVD and may be intermediate surrogates of stroke. The image quality in aortic imaging, although constantly improving, is not yet optimal and thus is a source of bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein conformations and dynamics can be studied by nuclear magnetic resonance spectroscopy using dilute liquid crystalline samples. This work clarifies the interpretation of residual dipolar coupling data yielded by the experiments. It was discovered that unfolded proteins without any additional structure beyond that of a mere polypeptide chain exhibit residual dipolar couplings. Also, it was found that molecular dynamics induce fluctuations in the molecular alignment and doing so affect residual dipolar couplings. The finding clarified the origins of low order parameter values observed earlier. The work required the development of new analytical and computational methods for the prediction of intrinsic residual dipolar coupling profiles for unfolded proteins. The presented characteristic chain model is able to reproduce the general trend of experimental residual dipolar couplings for denatured proteins. The details of experimental residual dipolar coupling profiles are beyond the analytical model, but improvements are proposed to achieve greater accuracy. A computational method for rapid prediction of unfolded protein residual dipolar couplings was also developed. Protein dynamics were shown to modulate the effective molecular alignment in a dilute liquid crystalline medium. The effects were investigated from experimental and molecular dynamics generated conformational ensembles of folded proteins. It was noted that dynamics induced alignment is significant especially for the interpretation of molecular dynamics in small, globular proteins. A method of correction was presented. Residual dipolar couplings offer an attractive possibility for the direct observation of protein conformational preferences and dynamics. The presented models and methods of analysis provide significant advances in the interpretation of residual dipolar coupling data from proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to probe top polarization. Some sensitivity is found for the new couplings of the top.