36 resultados para Scenario
Resumo:
Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.
Resumo:
The question what a business-to-business (B2B) collaboration setup and enactment application-system should look like remains open. An important element of such collaboration constitutes the inter-organizational disclosure of business-process details so that the opposing parties may protect their business secrets. For that purpose, eSourcing [37] has been developed as a general businessprocess collaboration concept in the framework of the EU research project Cross- Work. The eSourcing characteristics are guiding for the design and evaluation of an eSourcing Reference Architecture (eSRA) that serves as a starting point for software developers of B2B-collaboration systems. In this paper we present the results of a scenario-based evaluation method conducted with the earlier specified eSourcing Architecture (eSA) that generates as results risks, sensitivity, and tradeoff points that must be paid attention to if eSA is implemented. Additionally, the evaluation method detects shortcomings of eSA in terms of integrated components that are required for electronic B2B-collaboration. The evaluation results are used for the specification of eSRA, which comprises all extensions for incorporating the results of the scenario-based evaluation, on three refinement levels.
Resumo:
Raportissa on arvioitu ilmastonmuutoksen vaikutusta Suomen maaperän talviaikaiseen jäätymiseen lämpösummien perusteella. Laskelmat kuvaavat roudan paksuutta nimenomaisesti lumettomilla alueilla, esimerkiksi teillä, joilta satanut lumi aurataan pois. Luonnossa lämpöä eristävän lumipeitteen alla routaa on ohuemmin kuin tällaisilla lumettomilla alueilla. Toisaalta luonnollisessa ympäristössä paikalliset erot korostuvat johtuen mm. maalajeista ja kasvillisuudesta. Roudan paksuudet laskettiin ensin perusjakson 1971–2000 ilmasto-oloissa talviaikaisten säähavaintotietoihin pohjautuvien lämpötilojen perusteella. Sen jälkeen laskelmat toistettiin kolmelle tulevalle ajanjaksolle (2010–2039, 2040–2069 ja 2070–2099) kohottamalla lämpötiloja ilmastonmuutosmallien ennustamalla tavalla. Laskelman pohjana käytettiin 19 ilmastomallin A1B-skenaarioajojen keskimäärin simuloimaa lämpötilan muutosta. Tulosten herkkyyden arvioimiseksi joitakin laskelmia tehtiin myös tätä selvästi heikompaa ja voimakkaampaa lämpenemisarviota käyttäen. A1B-skenaarion mukaisen lämpötilan nousun toteutuessa nykyisiä mallituloksia vastaavasti routakerros ohenee sadan vuoden aikana Pohjois-Suomessa 30–40 %, suuressa osassa maan keski- ja eteläosissa 50–70 %. Jo lähivuosikymmeninä roudan ennustetaan ohentuvan 10–30 %, saaristossa enemmän. Mikäli lämpeneminen toteutuisi voimakkaimman tarkastellun vaihtoehdon mukaisesti, roudan syvyys pienenisi tätäkin enemmän. Roudan paksuuden vuosienvälistä vaihtelua ja sen muuttumista tulevaisuudessa pyrittiin myös arvioimaan. Leutoina talvina routa ohenee enemmän kuin normaaleina tai ankarina pakkastalvina. Päivittäistä sään vaihtelua simuloineen säägeneraattorin tuottamassa aineistoissa esiintyi kuitenkin liian vähän hyvin alhaisia ja hyvin korkeita lämpötiloja. Siksi näitten lämpötilatietojen pohjalta laskettu roudan paksuuskin ilmeisesti vaihtelee liian vähän vuodesta toiseen. Kelirikkotilanteita voi esiintyä myös kesken routakauden, jos useamman päivän suojasää ja samanaikainen runsas vesisade pääsevät sulattamaan maata. Tällaiset routakauden aikana sattuvat säätilat näyttävätkin yleistyvän lähivuosikymmeninä. Vuosisadan loppua kohti ne sen sijaan maan eteläosissa jälleen vähenevät, koska routakausi lyhenee oleellisesti. Tulevia vuosikymmeniä koskevien ilmastonmuutosennusteiden ohella routaa ja kelirikon esiintymistä on periaatteessa mahdollista ennustaa myös lähiaikojen sääennusteita hyödyntäen. Pitkät, viikkojen tai kuukausien mittaiset sääennusteet eivät tosin ole ainakaan vielä erityisen luotettavia, mutta myös lyhyemmistä ennusteista voisi olla hyötyä mm. tienpitoa suunniteltaessa.
Resumo:
This paper describes the cost-benefit analysis of digital long-term preservation (LTP) that was carried out in the context of the Finnish National Digital Library Project (NDL) in 2010. The analysis was based on the assumption that as many as 200 archives, libraries, and museums will share an LTP system. The term ‘system’ shall be understood as encompassing not only information technology, but also human resources, organizational structures, policies and funding mechanisms. The cost analysis shows that an LTP system will incur, over the first 12 years, cumulative costs of €42 million, i.e. an average of €3.5 million per annum. Human resources and investments in information technology are the major cost factors. After the initial stages, the analysis predicts annual costs of circa €4 million. The analysis compared scenarios with and without a shared LTP system. The results indicate that a shared system will have remarkable benefits. At the development and implementation stages, a shared system shows an advantage of €30 million against the alternative scenario consisting of five independent LTP solutions. During the later stages, the advantage is estimated at €10 million per annum. The cumulative cost benefit over the first 12 years would amount to circa €100 million.
Resumo:
The National Curriculum Guidelines on Early Childhood Education and Care (ECEC) in Finland says that ECEC is developed holistically through observing children´s and the educator community´s activities and the ECEC environment. The background of this research was that assesment should be based on commonly agreed principles, which are recorded e.g. to unit-specific ECEC curriculum. The objective of this research was to investigate how unit-specific ECEC curriculums have descriped the physical indoor environment in day-care centres. According to the National Curriculum Guidelines on ECEC, there are four ways of acting that are peculiar to children: playing, physical activities, exploration and artistic experiences and self-expression. The descriptions of physical environment in unit-spesific curriculums were observed through above mentioned four ways of acting. In addition to that, the descriptions of four ways of acting were compared to each other, in order to find out, which are the main differencies and similarities in relation to physical ECEC environment. Research material was build on unit-specific ECEC curriculums from 18 day-care centres of Helsinki. Target of the research were the descriptions of physical indoor environment in curriculums.The method used in the research was theory-guided content analysis. The analyses were mainly qualitative. The descriptions of psysical environment varied widely both quantitatively and by substance. All curriculums contained mentions of playing and artistic experiences and self-expression, but mentions of physical activities and exploration were noticiably fewer. All four ways of acting were mentioned in research material in relation to premises and instruments. Also, principles related to the use of premises and instruments and other more common priciples were mentioned in relation to all ways of acting. Instead of that, children were not mentioned even once as an upholders or innovators of physical activities environment and children were mentioned only once regarding to exploration environment. All ways of acting included scenarios of e.g. that environment must provide possibilities of particular way of acting, and both materials and instruments must be available for children. Anyhow, research material did not include any principle or scenario that relates to physical environment that would have occurred in every unit-specific curriculum.
Resumo:
The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.