36 resultados para Pronase -- immunology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative pathway (AP) of complement can be activated on any surface, self or non-self. In atypical hemolytic uremic syndrome (aHUS) the AP regulation on self surfaces is insufficient and leads to complement attack against self-cells resulting usually in end-stage renal disease. Factor H (FH) is one of the key regulators of AP activation on the self surfaces. The domains 19 and 20 (FH19-20) are critical for the ability of FH to discriminate between C3b-opsonized self and non-self surfaces and are a hot-spot for mutations that have been described from aHUS patients. FH19-20 contains binding sites for both the C3d part of C3b and self surface polyanions that are needed for efficient C3b inactivation. To study the dysfunction of FH19-20, crystallographic structures of FH19-20 and FH19-20 in complex with C3d (FH19-20:C3d) were solved and aHUS-associated and structurally interesting point mutations were induced to FH19-20. Functional defects caused by these mutations were studied by analyzing binding of the FH19-20 mutant proteins to C3d, C3b, heparin, and mouse glomerular endothelial cells (mGEnCs). The results revealed two independent binding interfaces between FH19-20 and C3d - the FH19 site and the FH20 site. Superimposition of the FH19-20:C3d complex on the previously published C3b and FH1-4:C3b structures showed that the FH20 site on C3d is partially occluded, but the FH19 site is fully available. Furthermore, binding of FH19-20 via the FH19 site to C3b did not block binding of the functionally important FH1-4 domains and kept the FH20 site free to bind heparin or an additional C3d. Binding assays were used to show that FH20 domain can bind to heparin while FH19-20 is bound to C3b via the FH19 site, and that both the FH19 site and FH20 are necessary for recognition of non-activator surfaces. Simultaneous binding of FH19 site to C3b and FH20 to anionic self structures are the key interactions in self-surface recognition by FH and thereby enhanced avidity of FH explains how AP discriminates between self and non-self. The aHUS-associated mutations on FH19-20 were found to disrupt binding of the FH19 or FH20 site to C3d/C3b, or to disrupt binding of FH20 to heparin or mGEnC. Any of these dysfunctions leads to loss of FH avidity to C3b bearing self surfaces explaining the molecular pathogenesis of the aHUS-cases where mutations are found within FH19-20.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus pneumoniae (pneumococcus) is a normal inhabitant of the human nasopharynx. Symptoms occur in only a small proportion of those who become carriers, but the ubiquity of the organism in the human population results in a large burden of disease. S. pneumoniae is the leading bacterial cause of pneumonia, sepsis, and meningitis worldwide, causing the death of a million children each year. Middle-ear infection is the most common clinical manifestation of mucosal pneumococcal infections. In invasive disease, S. pneumoniae gains access to the bloodstream and spreads to normally sterile parts of the body. The progression from asymptomatic colonization to disease depends on factors characteristic of specific pneumococcal strains as well as the status of host defenses. The polysaccharide capsule surrounding the bacterium is considered to be the most important factor affecting the virulence of pneumococci. It protects pneumococci from phagocytosis and also may determine its affinity to the respiratory epithelium. S. pneumoniae as a species comprises more than 90 different capsular serotypes, but not all of them are equally prevalent in human diseases. Invasive serotypes are rarely isolated from healthy carriers, but relatively often cause invasive disease. Serotypes that are carried asymptomatically for a long time behave like opportunistic pathogens, causing disease in patients who have impaired immune defenses. The complement system is a collection of blood and cell surface proteins that act as a major primary defense against invading microbes. Phagocytic cells with receptors for complement proteins can engulf and destroy pneumococcal cells opsonized with these proteins. S. pneumoniae has evolved a number of ways to subvert mechanisms of innate immunity, and this is likely to contribute to its pathogenicity. The capsular serotype, proteins essential for virulence, as well the genotype, may all influence the ability of pneumococcus to resist complement and its potential to cause disease. Immunization with conjugate vaccines produces opsonic antibodies, which enhance complement deposition and clearance of the bacteria. The pneumococcal vaccine included in the Finnish national immunization program in 2010 contains the most common serotypes causing invasive disease. Clinical data suggest that protection from middle-ear infection and possibly also from invasive disease depends largely on the capsular serotype, for reasons hitherto unknown. The general aim of this thesis is to assess the relative roles of the pneumococcal capsule and virulence proteins in complement evasion and subsequent opsonophagocytic killing. The main question is whether differences between serotypes to resist complement explain the different abilities of serotypes to cause disease. The importance of particular virulence factors to the complement resistance of a strain may vary depending on its genotype. Prior studies have evaluated the effect of the capsule and virulence proteins on complement resistance of S. pneumoniae by comparing only a few strains. In this thesis, the role of pneumococcal virulence factors in the complement resistance of the bacterium was studied in several genotypically different strains. The ability of pneumococci to inhibit deposition of the complement protein C3 on the bacterial surface was found to depend on the capsular serotype as well as on other features of the bacteria. The results suggest that pneumococcal histidine triad (Pht) proteins may play a role in complement inhibition, but their contribution depends on the bacterial genotype. The capsular serotype was found to influence complement resistance more than the bacterial genotype. A higher concentration of anticapsular antibodies was required for the opsonophagocytic killing of serotypes resistant to C3 deposition. The invasive serotypes were more resistant to C3 deposition than the opportunistic serotypes, suggesting that the former are better adapted to resist immune mechanisms controlling the development of invasive disease. The different susceptibilities of serotypes to complement deposition, opsonophagocytosis, and resultant antibody-mediated protection should be taken into account when guidelines for serological correlates for vaccine efficacy evaluations are made. The results of this thesis suggest that antibodies in higher quantity or quality are needed for efficient protection against the invasive serotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innate immunity and host defence are rapidly evoked by structurally invariant molecular motifs common to microbial world, called pathogen associated molecular patterns (PAMPs). In addition to PAMPs, endogenous molecules released in response to inflammation and tissue damage, danger associated molecular patterns (DAMPs), are required for eliciting the response. The most important PAMPs of viruses are viral nucleic acids, their genome or its replication intermediates, whereas the identity and characteristics of virus infection-induced DAMPs are poorly defined. PAMPs and DAMPs engage a limited set of germ-line encoded pattern recognition receptors (PRRs) in immune and non-immune cells. Membrane-bound Toll-like receptors (TLRs), cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptor (NLRs) are important PRRs involved in the recognition of the molecular signatures of viral infection, such as double-stranded ribonucleic acids (dsRNAs). Engagement of PRRs results in local and systemic innate immune responses which, when activated against viruses, evoke secretion of antiviral and pro-inflammatory cytokines, and programmed cell death i.e., apoptosis of the virus-infected cell. Macrophages are the central effector cells of innate immunity. They produce significant amounts of antiviral cytokines, called interferons (IFNs), and pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. IL-1β and IL-18 are synthesized as inactive precursors, pro-IL-1β and pro-IL-18, that are processed by caspase-1 in a cytoplasmic multiprotein complex, called the inflammasome. After processing, these cytokines are biologically active and will be secreted. The signals and secretory routes that activate inflammasomes and the secretion of IL-1β and IL-18 during virus infections are poorly characterized. The main goal of this thesis was to characterize influenza A virus-induced innate immune responses and host-virus interactions in human primary macrophages during an infection. Methodologically, various techniques of cellular and molecular biology, as well as proteomic tools combined with bioinformatics, were utilized. Overall, the thesis provides interesting insights into inflammatory and antiviral innate immune responses, and has characterized host-virus interactions during influenza A virus-infection in human primary macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune regulator (AIRE) is the gene mutated in the human polyglandular autoimmune disease called Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED) that belongs to the Finnish disease heritage. Murine Aire has been shown to be important in the generation of the T cell central tolerance in the thymus by promoting the expression of ectopic tissue-specific antigens in the thymic medulla. Aire is also involved in the thymus tissue organization during organogenesis. In addition to the thymus, AIRE/Aire is expressed in the secondary lymphoid organs. Accordingly, a role for AIRE/Aire in the maintenance of peripheral tolerance has been suggested. Peripheral tolerance involves mechanisms that suppress immune responses in secondary lymphoid organs. Regulatory T cells (Tregs) are an important suppressive T cell population mediating the peripheral tolerance. Tregs are generated in the thymus but also in the peripheral immune system T cells can acquire the Treg-phenotype. The aim of this study was to characterize Tregs in APECED patients and in the APECED mouse model (Aire-deficient mice). In the mouse model, it was possible to separate Aire expression in the thymus and in the secondary lymphoid organs. The relative importance of thymic and peripheral Aire expression in the maintenance of immunological tolerance was studied in an experimental model that was strongly biased towards autoimmunity, i.e. lymphopenia-induced proliferation (LIP) of lymphocytes. This experimental model was also utilised to study the behaviour of T cells with dual-specific T cell receptors (TCR) during the proliferation. The Treg phenotype was studied by flow cytometry and relative gene expression with real-time polymerase chain reaction. TCR repertoires of the Tregs isolated from APECED patients and healthy controls were also compared. The dual-specific TCRs were studied with the TCR repertoire analysis that was followed with sequencing of the chosen TCR genes in order to estimate changes in the dual-specific TCR diversity. The Treg function was tested with an in vitro suppression assay. The APECED patients had normal numbers of Tregs but the phenotype and suppressive functions of the Tregs were impaired. In order to separate Aire functions in the thymus from its yet unknown role in the secondary lymphoid organs, the phenomenon of LIP was utilised. In this setting, the lymphocytes that are adoptively transferred to a lymphopenic recipient proliferate to stimuli from self-originating antigens. This proliferation can result in autoimmunity if peripheral tolerance is not fully functional. When lymphocytes that had matured without Aire in the thymus were transferred to lymphopenic Aire-sufficient recipients, no clinical autoimmunity followed. The Aire-deficient donor-originating lymphocytes hyperproliferated, and other signs of immune dysregulation were also found in the recipients. Overt autoimmunity, however, was prevented by the Aire-deficient donor-originating Tregs that hyperproliferated in the recipients. Aire-deficient lymphopenic mice were used to study whether peripheral loss of Aire had an impact on the maintenance of peripheral tolerance. When normal lymphocytes were transferred to these Aire-deficient lymphopenic recipients, the majority of recipients developed a clinically symptomatic colitis. The colitis was confirmed also by histological analysis of the colon tissue sections. In the Aire-deficient lymphopenic recipients Tregs were proliferating significantly less than in the control group s recipients that had normal Aire expression in their secondary lymphoid organs. This study shows that Aire is not only important in the central tolerance but is also has a significant role in the maintenance of the peripheral tolerance both in mice and men. Aire expressed in the secondary lymphoid organs is involved in the functions of Tregs during an immune response. This peripheral expression appears to be relatively more important in some situations since only those lymphopenic recipients that had lost peripheral expression of Aire developed a symptomatic autoimmune disease. This AIRE-related Treg defect could be clinically important in understanding the pathogenesis of APECED.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.