61 resultados para PLANT PROTEINASE-INHIBITORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant species differ in their effects on ecosystem productivity and it is recognised that these effects are partly due to plant species-specific influences on soil processes. Until recently, however, not much attention was given to the potential role played by soil biota in these species-specific effects. While soil decomposers are responsible for governing the availability of nutrients for plant production, they simultaneously depend on the amount of carbon provided by plants. Litter and rhizodeposition constitute the two basal resources that plants provide to soil decomposer food webs. While it has been shown that both of these can have effects on soil decomposer communities that differ among plant species, the putative significance of these effects for plant nitrogen (N) acquisition is currently understudied. My PhD work aimed at clarifying whether the species-specific influences of three temperate grassland plants on the soil microfood-web, through rhizodeposition and litter, can feed back to plant N uptake. The methods and approach used (15N labelling of plant litter in microcosm experiments) revealed to be an effective combination of tools in studying these feedbacks. Plant effects on soil organisms were shown to differ significantly between plant species and the effects could be followed across several trophic levels. The labelling of litter further permitted the evaluation of plant acquisition of N derived from soil organic matter. The results show that the structure of the soil microfood-web can have a significant role in plant N acquisition when the structure is experimentally manipulated, such as when comparing systems consisting of microbes to those consisting of microbes and their grazers. However, despite this, the results indicate that differences in N uptake from soil organic matter between different plant species are not related to the effects these species exert on the structure of the soil microfood-web. Rather, these differences in N uptake seem to be determined by other species-specific traits of live plants and their litter. My results thus indicate that different resources provided by different plant species may not induce species-specific decomposer feedbacks on plant N uptake from soil organic matter. This further suggests that the species-specific plant effects on soil decomposer communities may not, at least in the short term, have significant consequences on plant production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-natural grasslands are the most important agricultural areas for biodiversity. The present study investigates the effects of traditional livestock grazing and mowing on plant species richness, the main emphasis being on cattle grazing in mesic semi-natural grasslands. The two reviews provide a thorough assessment of the multifaceted impacts and importance of grazing and mowing management to plant species richness. It is emphasized that livestock grazing and mowing have partially compensated the suppression of major natural disturbances by humans and mitigated the negative effects of eutrophication. This hypothesis has important consequences for nature conservation: A large proportion of European species originally adapted to natural disturbances may be at present dependent on livestock grazing and / or mowing. Furthermore, grazing and mowing are key management methods to mitigate effects of nutrient-enrichment. The species composition and richness in old (continuously grazed), new (grazing restarting 3-8 years ago) and abandoned (over 10 years) pastures differed consistently across a range of spatial scales, and was intermediate in new pastures compared to old and abandoned pastures. In mesic grasslands most plant species were shown to benefit from cattle grazing. Indicator species of biologically valuable grasslands and rare species were more abundant in grazed than in abandoned grasslands. Steep S-SW-facing slopes are the most suitable sites for many grassland plants and should be prioritized in grassland restoration. The proportion of species trait groups benefiting from grazing was higher in mesic semi-natural grasslands than in dry and wet grasslands. Consequently, species trait responses to grazing and the effectiveness of the natural factors limiting plant growth may be intimately linked High plant species richness of traditionally mowed and grazed areas is explained by numerous factors which operate on different spatial scales. Particularly important for maintaining large scale plant species richness are evolutionary and mitigation factors. Grazing and mowing cause a shift towards the conditions that have occurred during the evolutionary history of European plant species by modifying key ecological factors (nutrients, pH and light). The results of this Dissertation suggest that restoration of semi-natural grasslands by private farmers is potentially a useful method to manage biodiversity in the agricultural landscape. However, the quality of management is commonly improper, particularly due to financial constraints. For enhanced success of restoration, management regulations in the agri-environment scheme need to be defined more explicitly and the scheme should be revised to encourage management of biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are rooted to their growth place; therefore it is important that they react adequately to changes in environmental conditions. Stomatal pores, which are formed of a pair of guard cells in leaf epidermis, regulate plant gas-exchange. Importantly, guard cells protect the plant from desiccation in drought conditions by reducing the aperture of the stomatal pore. They serve also as the first barrier against the major air pollutant ozone, but the behaviour of guard cells during ozone exposure has not been sufficiently addressed. Aperture of the stomatal pore is regulated by the influx and efflux of osmotically active ions via ion channels and transporters across the guard cell membrane, however the molecular identity of guard cell plasma membrane anion channel has remained unknown. In the frame of this study, guard cell behaviour during ozone exposure was studied using the newly constructed Arabidopsis whole-rosette gas-exchange system. Ozone induced a Rapid Transient Decrease (RTD) in stomatal conductance within 10 min from the start of exposure, which was followed by a recovery in the conductance within the next 40 min. The decrease in stomatal conductance was dependent on the applied ozone concentration. Three minutes of ozone exposure was sufficient to induce RTD and further ozone application during the closure-recovery process had no effect on RTD, demonstrating that the whole process is programmed within the first three minutes. To address the molecular components responsible for RTD, the ozone response was measured in 59 different Arabidopsis mutants involved in guard cell signalling. Four of the tested mutants slac1 (originally rcd3), ost1, abi1-1 and abi2-1 lacked RTD completely. As the ozone sensitive mutant slac1 lacked RTD, the next aim of this study was to identify and characterize SLAC1. SLAC1 was shown to be a central regulator in response to all major factors regulating guard cell aperture: CO2, light/darkness transitions, ozone, relative air humidity, ABA, NO, H2O2, and extracellular Ca2+. It encodes the first guard cell plasma membrane slow type anion channel to be identified at the molecular level. Interestingly, the rapid type anion conductance was intact in slac1 mutant plants. For activation, SLAC1 needs to be phosphorylated. Protein kinase OST1 was shown to phosphorylate several amino acids in the N-terminal tail of SLAC1, Ser120 was one of its main targets, which led to SLAC1 activation. The lack of RTD in type 2C protein phosphatase mutants abi1-1 and abi2-1, suggests that these proteins have a regulatory role in ozoneinduced activation of the slow type anion channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of my thesis project was to assess the impact of elevated ozone (O3) and carbon dioxide (CO2) on the growth, competition and community of meadow plants in northern Europe. The thesis project consisted of three separate O3 and CO2 exposure experiments that were conducted as open-top-chamber (OTC) studies at Jokioinen, SW Finland, and a smaller-scale experiment with different availabilities of resources in greenhouses in Helsinki. The OTC experiments included a competition experiment with two- and three-wise interactions, a mesocosm-scale meadow community with a large number of species, and a pot experiment that assessed intraspecific differences of Centaurea jacea ecotypes. The studied lowland hay meadow proved to be an O3-sensitive biotope, as the O3 concentrations used (40-50 ppb) were moderate, and yet, six out of nine species (Campanula rotundifolia, Centaurea jacea, Fragaria vesca, Ranunculus acris, Trifolium medium, Vicia cracca) showed either significant reductions in biomass or reproductive development, visible O3 injury or any two as a response to elevated O3. The plant species and ecotypes exhibited large intra- and interspecific variation in their response to O3, but O3 and CO2 concentrations did not cause changes in their interspecific competition or in community composition. However, the largest O3-induced growth reductions were seen in the least abundant species (C. rotundifolia and F. vesca), which may indicate O3-induced suppression of weak competitors. The overall effects of CO2 were relatively small and mainly restricted to individual species and several measured variables. Based on the present studies, most of the deleterious effects of tropospheric O3 are not diminished by a moderate increase in CO2 under low N availability, and variation exists between different species and variables. The present study indicates that the growth of several herb species decreases with increasing atmospheric O3 concentrations, and that these changes may pose a threat to the biodiversity of meadows. Ozone-induced reductions in the total community biomass production and N pool are likely to have important consequences for the nutrient cycling of the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) represent a family of 23 metalloendopeptidases, collectively capable of degrading all components of the extracellular matrix. MMPs have been implicated in several inflammatory processes such as arthritis, atherosclerosis, and even carcinomas. They are also involved in several beneficial activities such as epithelial repair. MMPs are inhibited by endogenous tissue inhibitors of matrix metalloproteinases (TIMP). In this study, MMPs were investigated in intestinal mucosa of inflammatory bowel diseases (IBD), chronic intestinal disorders. The main focus was to characterize mucosal inflammation in the intestine, but also cutaneous pyoderma gangrenosum (PG), to assess similarites with IBD inflammation. MMPs and TIMPs were mainly examined in colonic mucosa, in adult Crohn s disease (CD), and paediatric CD, ulcerative colitis (UC), and indeterminate colitis (IC). Ileal pouch mucosa of proctocolectomized paediatric onset IBD patients was also investigated to characterize pouch mucosa. The focus was on finding specific MMPs that could act as markers to differentiate between different IBD disorders, and MMPs that could be implied as markers for tissue injury, potentially serving as targets for MMP-inhibitors. All examinations were performed using immunohistochemistry. The results show that immunosuppressive agents decrease stromal expression of MMP-9 and -26 that could serve as specific targets for MMP-inhibitors in treating CD. In paediatric colonic inflammation, MMP-10 and TIMP-3 present as molecular markers for IBD inflammation, and MMP-7 for CD. MMP expression in the the pouch mucosa could not be classified as strictly IBD- or non-IBD-like. For the first time, this study describes the expression of MMP-3, -7, -9, -12, and TIMP-2 and -3 in pouch mucosa. The MMP profile in PG bears resemblance to both intestinal IBD inflammation and cutaneous inflammation. Based on the results, MMPs and their inhibitors emerge as promising tools in the differential diagnosis of IBD and characterization of the disease subtype, although further research is necessary. Furthermore, the expression of several MMPs in pouch has been described for the first time. While further research is warranted, the findings contribute to a better understanding of events occurring in IBD mucosa, as well as pyoderma gangrenosum.