51 resultados para Meningoencephalitis -- complications -- therapy
Resumo:
Cancer is a devastating disease with poor prognosis and no curative treatment, when widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers are caused due to changes in the genetic material of the transformed cells. Cancer gene therapy has emerged as a new treatment option, and past decades brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic viruses constitute a novel therapeutic approach given their capacity to replicate in and kill specifically tumor cells as well as reaching tumor distant metastasis. Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows that new developed adenoviruses, in particular Ad5/19p-HIT, can be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low liver transduction resulted in a favorable tumor to liver ratio of virus load. Further, we established a new immunocompetent animal model Syrian hamsters. Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal tissues. There are no antiviral drugs available to inhibit adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated virus replication in vitro and showed significant reduction in vivo in tumors and liver. Once safety concerns were addressed together with the new given antiviral treatment options, we further improved oncolytic adenoviruses for better tumor penetration, local amplification and host system modulation. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of renal cancer. This virus exhibited increased anti-tumor effect and specific replication in kidney cancer cells. The key player for good efficacy of oncolytic virotherapy is the host immune response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis together with an anti-tumor immune response prompted by the immunomodulatory molecule. In conclusion, the results presented in this thesis constitute advances in our understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment options as a safety switch in case of replication associated side-effects, and modulation of the host immune system towards tumor elimination.
Resumo:
Staphylococcus aureus is the second most common bloodstream isolate both in community- and hospital-acquired bacteremias. The clinical course of S. aureus bacteremia (SAB) is determined by its complications, particularly by the development of deep infections and thromboembolic events. Despite the progress of antimicrobial therapy, SAB is still associated with high mortality. However, injection drug users (IDUs) tend to have fewer complications and better prognosis than nonaddicts, especially in endocarditis. The present study was undertaken to investigate epidemiology, treatment and outcome of S. aureus bacteremia and endocarditis in Finland. In particular, differences in bacterial strains and their virulence factors, and host immune responses were compared between IDUs and nonaddicts. In Finland, 5045 SAB cases during 1995-2001 were included using the National Infectious Disease Register maintained by National Public Health Institute. The annual incidence of SAB increased, especially in elderly. While the increase in incidence may partly be explained by better reporting, it most likely reflects a growing population at risk, affected by such factors as age and/or severe comorbidity. Nosocomial infections accounted for 51% of cases, with no change in their proportion during the study period. The 28-day mortality was 17% and remained unchanged over time. A total of 381 patients with SAB were randomized to receive either standard antibiotic treatment or levofloxacin added to standard treatment. Levofloxacin combination therapy did not decrease the mortality, lower the incidence of deep infections, nor did it speed up the recovery during 3 months follow-up. However, patients with a deep infection appeared to benefit from combination therapy with rifampicin, as suggested also by experimental data. Deep infections were found in 84% of SAB patients within one week after randomization, and they appeared to be more common than previously reported. Endocarditis was observed in 74 of 430 patients (17%) with SAB, of whom 20 were IDUs and 54 nonaddicts. Right-sided involvement was diagnosed in 60% of addicts whereas 93% of nonaddicts had left-sided endocarditis. Unexpectedly, IDUs showed extracardiac deep infections, thromboembolic events and severe sepsis with the same frequency as nonaddicts. The prognosis of endocarditis was better among addicts due to their younger age and lack of underlying diseases in agreement with earlier reports. In total, all 44 IDUs with SAB were included and 20 of them had endocarditis. An equal number of nonaddicts with SAB were chosen as group matched controls. Serological tests were not helpful in identifying patients with a deep infection. No individual S. aureus strain dominated in endocarditis among addicts. Characterization of the virulence factors of bacterial strains did not reveal any significant differences in IDUs and nonaddicts.
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
Since national differences exist in genes, environment, diet and life habits and also in the use of postmenopausal hormone therapy (HT), the associations between different hormone therapies and the risk for breast cancer were studied among Finnish postmenopausal women. All Finnish women over 50 years of age who used HT were identified from the national medical reimbursement register, established in 1994, and followed up for breast cancer incidence (n= 8,382 cases) until 2005 with the aid of the Finnish Cancer Registry. The risk for breast cancer in HT users was compared to that in the general female population of the same age. Among women using oral or transdermal estradiol alone (ET) (n = 110,984) during the study period 1994-2002 the standardized incidence ratio (SIR) for breast cancer in users for < 5 years was 0.93 (95% confidence interval (CI) 0.80–1.04), and in users for ≥ 5 years 1.44 (1.29–1.59). This therapy was associated with similar rises in ductal and lobular types of breast cancer. Both localized stage (1.45; 1.26–1.66) and cancers spread to regional nodes (1.35; 1.09–1.65) were associated with the use of systemic ET. Oral estriol or vaginal estrogens were not accompanied with a risk for breast cancer. The use of estrogen-progestagen therapy (EPT) in the study period 1994-2005 (n= 221,551) was accompanied with an increased incidence of breast cancer (1.31;1.20-1.42) among women using oral or transdermal EPT for 3-5 years, and the incidence increased along with the increasing duration of exposure (≥10 years, 2.07;1.84-2.30). Continuous EPT entailed a significantly higher (2.44; 2.17-2.72) breast cancer incidence compared to sequential EPT (1.78; 1.64-1.90) after 5 years of use. The use of norethisterone acetate (NETA) as a supplement to estradiol was accompanied with a higher incidence of breast cancer after 5 years of use (2.03; 1.88-2.18) than that of medroxyprogesterone acetate (MPA) (1.64; 1.49-1.79). The SIR for the lobular type of breast cancer was increased within 3 years of EPT exposure (1.35; 1.18-1.53), and the incidence of the lobular type of breast cancer (2.93; 2.33-3.64) was significantly higher than that of the ductal type (1.92; 1.67-2.18) after 10 years of exposure. To control for some confounding factors, two case control studies were performed. All Finnish women between the ages of 50-62 in 1995-2007 and diagnosed with a first invasive breast cancer (n= 9,956) were identified from the Finnish Cancer Registry, and 3 controls of similar age (n=29,868) without breast cancer were retrieved from the Finnish national population registry. Subjects were linked to the medical reimbursement register for defining the HT use. The use of ET was not associated with an increased risk for breast cancer (1.00; 0.92-1.08). Neither was progestagen-only therapy used less than 3 years. However, the use of tibolone was associated with an elevated risk for breast cancer (1.39; 1.07-1.81). The case-control study confirmed the results of EPT regarding sequential vs. continuous use of progestagen, including progestagen released continuously by an intrauterine device; the increased risk was seen already within 3 years of use (1.65;1.32-2.07). The dose of NETA was not a determinant as regards the breast cancer risk. Both systemic ET, and EPT are associated with an elevation in the risk for breast cancer. These risks resemble to a large extent those seen in several other countries. The use of an intrauterine system alone or as a complement to systemic estradiol is also associated with a breast cancer risk. These data emphasize the need for detailed information to women who are considering starting the use of HT.
Resumo:
Objective: Glucocorticoid therapy is used worldwide to treat various inflammatory and immune conditions, including inflammatory bowel disease (IBD). In IBD, 80% of the patients obtain a positive response to the therapy; however the development of glucocorticoid-related side-effects is common. Our aim was therefore to study the possibility of optimizing glucocorticoid therapy in children and adolescents with IBD by measuring circulating glucocorticoid bioactivity (GBA) and serum glucocorticoid-responsive biomarkers in patients receiving steroid treatment for active disease. Methods: A total of sixty-nine paediatric IBD patients from the Paediatric Outpatient Clinics of the University Hospitals of Helsinki and Tampere participated in the studies. Control patients included 101 non-IBD patients and 41 disease controls in remission. In patients with active disease, blood samples were withdrawn before the glucocorticoid therapy was started, at 2-4 weeks after the initiation of the steroid and at 1-month intervals thereafter. Clinical response to glucocorticoid treatment and the development of steroid adverse events was carefully registered. GBA was analyzed with a COS-1 cell bioassay. The measured glucocorticoid therapy-responsive biomarkers included adipocyte-derived adiponectin and leptin, bone turnover-related collagen markers amino-terminal type I procollagen propeptide (PINP) and carboxyterminal telopeptide of type I collagen (ICTP) as well as insulin-like growth factor 1 (IGF-1) and sex hormone-binding globulin (SHBG), and inflammatory marker high-sensitivity C-reactive protein (hs-CRP). Results: The most promising marker for glucocorticoid sensitivity was serum adiponectin that associated with steroid therapy–related adverse events. Serum leptin indicated a similar trend. In contrast, circulating GBA rose in all subjects receiving glucocorticoid treatment but did not associate with the clinical response to steroids or with glucocorticoid therapy-related side-effects. Of notice, young patients (<10 years) showed similar GBA levels than older patients, despite receiving higher weight-adjusted doses of glucocorticoid. Markers of bone formation were lower in children with active IBD than in the control patients, probably reflecting the suppressive effect of the active inflammation. The onset of the glucocorticoid therapy further suppressed bone turnover. Inflammatory marker hs-CRP decreased readily after the initiation of the steroid, however the decrease did not associate with the clinical response to glucocorticoids. Conclusions: This is the first study to show that adipocyte-derived adiponectin associates with steroid therapy-induced side-effects. Further studies are needed, but it is possible that the adiponectin measurement could aid the recognition of glucocorticoid-sensitive patients in the future. GBA and the other markers reflecting glucocorticoid activity in different tissues changed during the treatment, however their change did not correlate with the therapeutic response to steroids or with the development of glucocorticoid-related side effects and therefore cannot guide the therapy in these patients. Studies such as as the present one that combine clinical data with newly developed biomolecular technology are needed to step-by-step build a general picture of the glucocorticoid actions in different tissues.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.
Resumo:
Radiation therapy (RT) plays currently significant role in curative treatments of several cancers. External beam RT is carried out mostly by using megavoltage beams of linear accelerators. Tumor eradication and normal tissue complications correlate to dose absorbed in tissues. Normally this dependence is steep and it is crucial that actual dose within patient accurately correspond to the planned dose. All factors in a RT procedure contain uncertainties requiring strict quality assurance. From hospital physicist´s point of a view, technical quality control (QC), dose calculations and methods for verification of correct treatment location are the most important subjects. Most important factor in technical QC is the verification that radiation production of an accelerator, called output, is within narrow acceptable limits. The output measurements are carried out according to a locally chosen dosimetric QC program defining measurement time interval and action levels. Dose calculation algorithms need to be configured for the accelerators by using measured beam data. The uncertainty of such data sets limits for best achievable calculation accuracy. All these dosimetric measurements require good experience, are workful, take up resources needed for treatments and are prone to several random and systematic sources of errors. Appropriate verification of treatment location is more important in intensity modulated radiation therapy (IMRT) than in conventional RT. This is due to steep dose gradients produced within or close to healthy tissues locating only a few millimetres from the targeted volume. The thesis was concentrated in investigation of the quality of dosimetric measurements, the efficacy of dosimetric QC programs, the verification of measured beam data and the effect of positional errors on the dose received by the major salivary glands in head and neck IMRT. A method was developed for the estimation of the effect of the use of different dosimetric QC programs on the overall uncertainty of dose. Data were provided to facilitate the choice of a sufficient QC program. The method takes into account local output stability and reproducibility of the dosimetric QC measurements. A method based on the model fitting of the results of the QC measurements was proposed for the estimation of both of these factors. The reduction of random measurement errors and optimization of QC procedure were also investigated. A method and suggestions were presented for these purposes. The accuracy of beam data was evaluated in Finnish RT centres. Sufficient accuracy level was estimated for the beam data. A method based on the use of reference beam data was developed for the QC of beam data. Dosimetric and geometric accuracy requirements were evaluated for head and neck IMRT when function of the major salivary glands is intended to be spared. These criteria are based on the dose response obtained for the glands. Random measurement errors could be reduced enabling lowering of action levels and prolongation of measurement time interval from 1 month to even 6 months simultaneously maintaining dose accuracy. The combined effect of the proposed methods, suggestions and criteria was found to facilitate the avoidance of maximal dose errors of up to even about 8 %. In addition, their use may make the strictest recommended overall dose accuracy level of 3 % (1SD) achievable.
Resumo:
Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.