33 resultados para GASTROINTESTINAL DISEASES
Resumo:
Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.
Resumo:
Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.
Resumo:
Ihmisen ruuansulatuskanavan bakteeriston kehitys alkaa syntymästä, jolloin ensimmäiset bakteerit kansoittavat steriilin ruuansulatuskanavan. Bakteeristo kehittyy perimän, ympäristön ja varhaisen ruokavalion vaikutuksesta kohti monimuotoisempaa bakteeripopulaatiota. Aikuisen ruuansulatuskanavan normaalibakteeristo on varsin muuttumaton, mutta siihen vaikuttavat monet tekijät, kuten ikä, terveydentila, ruokavalio ja antibioottien käyttö. Bakteeriston koostumus vaihtelee ruuansulatuskanavan eri osissa ja bakteerimäärä kasvaa kohti paksusuolta, ollen paksusuolessa ja ulosteessa peräti 1010-1012 pmy/ml. Suurin osa ruuansulatuskanavan bakteereista on anaerobeja. Ruuansulatuskanavan bakteeristo vaikuttaa muun muassa suoliston kehittymiseen ja hiilihydraattien ja proteiinien hajotukseen sekä toimii osana immuunipuolustusta. Sulfaattia pelkistävät bakteerit (SRB) ovat monimuotoinen ryhmä pääosin anaerobisia bakteereita, jotka käyttävät aineenvaihdunnassaan elektronin vastaanottajana sulfaattia muuttaen sen lopulta sulfidiksi. SRB:t ovat sopeutuneet useisiin erilaisiin ympäristöihin. Niitä tavataan mm. vesistöjen sedimenteissä sekä ihmisen ruuansulatuskanavassa. Ihmisen ruuansulatuskanavassa on SRB:ta n. 105-108 pmy/g, ja niitä on löydetty erityisesti anaerobisista osista kuten suun ientaskuista ja paksusuolesta. SRB:t voivat olla haitaksi ruuansulatuskanavalle tuottamansa sulfidin vuoksi, joka esiintyy vesiliuoksessa vetysulfidina. Tämän on havaittu olevan toksista suoliston epiteelisoluille. Viimeaikoina on kiinnostuttu sulfaatinpelkistäjien yhteydestä suoliston sairaustiloihin, kuten tulehduksellisiin suolistosairauksiin (IBD). Pro gradu -tutkimukseni tavoitteena oli kehittää PCR-DGGE- ja qPCR-menetelmät ulosteen sulfaattia pelkistävien bakteerien määritykseen. Kohdegeeninä menetelmänkehityksessä käytettiin dsrAB-geeniä, joka koodaa dissimilatorista sulfiitinpelkistysentsyymiä. dsrAB-geeni on sulfaatinpelkistäjille ominainen konservoitunut geenialue, johon perustuvia tutkimuksia ei vielä ole paljon ihmispuolelta. qPCR-menetelmä saatiin optimoitua herkäksi ja spesifiseksi käyttäen dsrA-geenispesifisiä alukkeita, mutta PCR-DGGE-menetelmää ei saatu optimoitua käytössä olleilla alukkeilla, jotka monistivat PCR-DGGE:ssa myös negatiivikontrollikantoja. Tutkittaessa qPCR:lla IBD:tä (Crohn ja ulseratiivinen koliitti) sairastavien lasten ja terveiden kontrollihenkilöiden ulostenäytteistä eristettyä DNA:ta, merkittävää eroa SRB-määrissä ei havaittu eri ryhmien välillä. Crohnin tautia sairastavien aktiivisen vaiheen ja oireettoman vaiheen näytteiden välillä oli kuitenkin tilastollisesti merkitsevä ero (SRB-määrät; oireeton vaihe>oireellinen vaihe) (P <0,05).