32 resultados para Computational Complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation I study language complexity from a typological perspective. Since the structuralist era, it has been assumed that local complexity differences in languages are balanced out in cross-linguistic comparisons and that complexity is not affected by the geopolitical or sociocultural aspects of the speech community. However, these assumptions have seldom been studied systematically from a typological point of view. My objective is to define complexity so that it is possible to compare it across languages and to approach its variation with the methods of quantitative typology. My main empirical research questions are: i) does language complexity vary in any systematic way in local domains, and ii) can language complexity be affected by the geographical or social environment? These questions are studied in three articles, whose findings are summarized in the introduction to the dissertation. In order to enable cross-language comparison, I measure complexity as the description length of the regularities in an entity; I separate it from difficulty, focus on local instead of global complexity, and break it up into different types. This approach helps avoid the problems that plagued earlier metrics of language complexity. My approach to grammar is functional-typological in nature, and the theoretical framework is basic linguistic theory. I delimit the empirical research functionally to the marking of core arguments (the basic participants in the sentence). I assess the distributions of complexity in this domain with multifactorial statistical methods and use different sampling strategies, implementing, for instance, the Greenbergian view of universals as diachronic laws of type preference. My data come from large and balanced samples (up to approximately 850 languages), drawn mainly from reference grammars. The results suggest that various significant trends occur in the marking of core arguments in regard to complexity and that complexity in this domain correlates with population size. These results provide evidence that linguistic patterns interact among themselves in terms of complexity, that language structure adapts to the social environment, and that there may be cognitive mechanisms that limit complexity locally. My approach to complexity and language universals can therefore be successfully applied to empirical data and may serve as a model for further research in these areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (ˆfCLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achieving the same time and space complexity as the traditional log-likelihood scoring criterion. The resulting criterion has an information-theoretic interpretation based on interaction information, which exhibits its discriminative nature. To evaluate the performance of the proposed criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large suite of benchmark data sets from the UCI repository show that ˆfCLL-trained classifiers achieve at least as good accuracy as the best compared classifiers, using significantly less computational resources.