32 resultados para Carbon assimilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.