32 resultados para Bering Sea
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .