37 resultados para Bayesian techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close to one half of the LHC events are expected to be due to elastic or inelastic diffractive scattering. Still, predictions based on extrapolations of experimental data at lower energies differ by large factors in estimating the relative rate of diffractive event categories at the LHC energies. By identifying diffractive events, detailed studies on proton structure can be carried out. The combined forward physics objects: rapidity gaps, forward multiplicity and transverse energy flows can be used to efficiently classify proton-proton collisions. Data samples recorded by the forward detectors, with a simple extension, will allow first estimates of the single diffractive (SD), double diffractive (DD), central diffractive (CD), and non-diffractive (ND) cross sections. The approach, which uses the measurement of inelastic activity in forward and central detector systems, is complementary to the detection and measurement of leading beam-like protons. In this investigation, three different multivariate analysis approaches are assessed in classifying forward physics processes at the LHC. It is shown that with gene expression programming, neural networks and support vector machines, diffraction can be efficiently identified within a large sample of simulated proton-proton scattering events. The event characteristics are visualized by using the self-organizing map algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nutritional quality of the product as well as other quality attributes like microbiological and sensory quality are essential factors in baby food industry, and therefore different alternative sterilizing methods for conventional heating processes are of great interest in this food sector. This report gives an overview on different sterilization techniques for baby food. The report is a part of the work done in work package 3 ”QACCP Analysis Processing: Quality – driven distribution and processing chain analysis“ in the Core Organic ERANET project called Quality analysis of critical control points within the whole food chain and their impact on food quality, safety and health (QACCP). The overall objective of the project is to optimise organic production and processing in order to improve food safety as well as nutritional quality and increase health promoting aspects in consumer products. The approach will be a chain analysis approach which addresses the link between farm and fork and backwards from fork to farm. The objective is to improve product related quality management in farming (towards testing food authenticity) and processing (towards food authenticity and sustainable processes. The articles in this volume do not necessarily reflect the Core Organic ERANET’s views and in no way anticipate the Core Organic ERANET’s future policy in this area. The contents of the articles in this volume are the sole responsibility of the authors. The information contained here in, including any expression of opinion and any projection or forecast, has been obtained from sources believed by the authors to be reliable but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. The writers gratefully acknowledge the financial support from the Core Organic Funding Body: Ministry of Agriculture and Forestry, Finland, Swiss Federal Office for Agriculture, Switzerland and Federal Ministry of Consumer Protection, Food and Agriculture, Germany.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study investigates whether there is an association between different combinations of emphasis on generic strategies (product differentiation and cost efficiency) and perceived usefulness of management accounting techniques. Previous research has found that cost leadership is associated with traditional accounting techniques and product differentiation with a variety of modern management accounting approaches. The present study focuses on the possible existence of a strategy that mixes these generic strategies. The empirical results suggest that (a) there is no difference in the attitudes towards the usefulness of traditional management accounting techniques between companies that adhere either to a single strategy or a mixed strategy; (b) there is no difference in the attitudes towards modern and traditional techniques between companies that adhere to a single strategy, whether this is product differentiation or cost efficiency, and c) companies that favour a mixed strategy seem to have a more positive attitude towards modern techniques than companies adhering to a single strategy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (ˆfCLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achieving the same time and space complexity as the traditional log-likelihood scoring criterion. The resulting criterion has an information-theoretic interpretation based on interaction information, which exhibits its discriminative nature. To evaluate the performance of the proposed criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large suite of benchmark data sets from the UCI repository show that ˆfCLL-trained classifiers achieve at least as good accuracy as the best compared classifiers, using significantly less computational resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian networks are compact, flexible, and interpretable representations of a joint distribution. When the network structure is unknown but there are observational data at hand, one can try to learn the network structure. This is called structure discovery. This thesis contributes to two areas of structure discovery in Bayesian networks: space--time tradeoffs and learning ancestor relations. The fastest exact algorithms for structure discovery in Bayesian networks are based on dynamic programming and use excessive amounts of space. Motivated by the space usage, several schemes for trading space against time are presented. These schemes are presented in a general setting for a class of computational problems called permutation problems; structure discovery in Bayesian networks is seen as a challenging variant of the permutation problems. The main contribution in the area of the space--time tradeoffs is the partial order approach, in which the standard dynamic programming algorithm is extended to run over partial orders. In particular, a certain family of partial orders called parallel bucket orders is considered. A partial order scheme that provably yields an optimal space--time tradeoff within parallel bucket orders is presented. Also practical issues concerning parallel bucket orders are discussed. Learning ancestor relations, that is, directed paths between nodes, is motivated by the need for robust summaries of the network structures when there are unobserved nodes at work. Ancestor relations are nonmodular features and hence learning them is more difficult than modular features. A dynamic programming algorithm is presented for computing posterior probabilities of ancestor relations exactly. Empirical tests suggest that ancestor relations can be learned from observational data almost as accurately as arcs even in the presence of unobserved nodes.