33 resultados para BETA PARTICLES
Resumo:
In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.
Resumo:
Several of the newly developed drug molecules experience poor biopharmaceutical behavior, which hinders their effective delivery at the proper site of action. Among the several strategies employed in order to overcome this obstacle, mesoporous silicon-based materials have emerged as promising drug carriers due to their ability to improve the dissolution behavior of several poorly water-soluble drugs compounds confined within their pores. In addition to improve the dissolution behavior of the drugs, we report that porous silicon (PSi) nanoparticles have a higher degree of biocompatibility than PSi microparticles in several cell lines studied. In addition, the degradation of the nanoparticles showed its potential to fast clearance in the body. After oral delivery, the PSi particles were also found to transit the intestines without being absorbed. These results constituted the first quantitative analysis of the behavior of orally administered PSi nanoparticles compared with other delivery routes in rats. The self-assemble of a hydrophobin class II (HFBII) protein at the surface of hydrophobic PSi particles endowed the particles with greater biocompatibility in different cell lines, was found to reverse their hydrophobicity and also protected a drug loaded within its pores against premature release at low pH while enabling subsequent drug release as the pH increased. These results highlight the potential of HFBII-coating for PSi-based drug carriers in improving their hydrophilicity, biocompatibility and pH responsiveness in drug delivery applications. In conclusion, mesoporous silicon particles have been shown to be a versatile platform for improving the dissolution behavior of poorly water-soluble drugs with high biocompatibility and easy surface modification. The results of this study also provide information regarding the biofunctionalization of the THCPSi particles with a fungal protein, leading to an improvement in their biocompatibility and endowing them with pH responsive and mucoadhesive properties.