36 resultados para magnetic powder
Resumo:
Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.
Resumo:
Cardiovascular diseases (CVD) are, in developed countries, the leading cause of mortality. The majority of premature deaths and disability caused by CVD are due to atherosclerosis, a degenerating inflammatory disease affecting arterial walls. Early identification of lesions and initiation of treatment is crucial because the first manifestations quite often are major disabling cardiovascular events. Methods of finding individuals at high risk for these events are under development. Because magnetic resonance imaging (MRI) is an excellent non-invasive tool to study the structure and function of vascular system, we sought to discover whether existing MRI methods are able to show any difference in aortic and intracranial atherosclerotic lesions between patients at high risk for atherosclerosis and healthy controls. Our younger group (age 6-48) comprised 39 symptomless familial hypercholesterolemia (FH) patients and 25 healthy controls. Our older group (age 48-64) comprised 19 FH patients and 18 type 2 diabetes mellitus (DM) patients with coronary heart disease (CHD) and 29 healthy controls. Intracranial and aortic MRI was compared with carotid and femoral ultrasound (US). In neither age-group did MRI reveal any difference in the number of ischemic brain lesions or white matter hyperintensities (WMHIs) - possible signs of intracranial atherosclerosis - between patients and controls. Furthermore, MRI showed no difference in the structure or function of the aorta between FH patients and controls in either group. DM patients had lower compliance of the aorta than did controls, while no difference appeared between DM and FH patients. However, ultrasound showed greater plaque burden and increased thickness of carotid arterial walls in FH and DM patients in both age-groups, suggesting a more advanced atherosclerosis. The mortality of FH patients has decreased substantially after the late 1980´s when statin treatment became available. With statins, the progression of atherosclerotic lesions slows. We think that this, in concert with improvements in treatment of other risk factors, is one reason for the lack of differences between FH patients and controls in MRI measurements of the aorta and brain despite the more advanced disease of the carotid arteries assessed with US. Furthermore, whereas atherosclerotic lesions between different vascular territories correlate, differences might still exist in the extent and location of these lesions among different diseases. Small (<5 mm in diameter) WMHIs are more likely a phenomenon related to aging, but the larger ones may be the ones related to CVD and may be intermediate surrogates of stroke. The image quality in aortic imaging, although constantly improving, is not yet optimal and thus is a source of bias.
Resumo:
Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.
Resumo:
Magnetic susceptibility measurements were performed on freshly fallen Almahata Sitta meteorites. Most recovered samples are polymict ureilites. Those found in the first four months since impact, before the meteorites were exposed to rain, have a magnetic susceptibility in the narrow range of 4.92 ± 0.08 log 10-9 Am2/kg close to the range of other ureilite falls 4.95 ± 0.14 log 10-9 Am2/kg reported by Rochette et al. (2009). The Almahata Sitta samples collected one year after the fall have similar values (4.90 ± 0.06 log 10-9 Am2/kg), revealing that the effect of one-year of terrestrial weathering was not severe yet. However, our reported values are higher than derived from polymict (brecciated) ureilites 4.38 ± 0.47 log 10-9 Am2/kg (Rochette et al. 2009) containing both falls and finds confirming that these are significantly weathered. Additionally other fresh-looking meteorites of non-ureilitic compositions were collected in the Almahata Sitta strewn field. Magnetic susceptibility measurements proved to be a convenient non-destructive method for identifying non-ureilitic meteorites among those collected in the Almahata Sitta strewn field, even among fully crusted. Three such meteorites, no. 16, 25, and 41, were analyzed and their composition determined as EH6, H5 and EL6 respectively (Zolensky et al., 2010). A high scatter of magnetic susceptibility values among small (< 5 g) samples revealed high inhomogeneity within the 2008 TC3 material at scales below 1-2 cm.
Resumo:
Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.