92 resultados para ion-atom collisions
Resumo:
Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.
Resumo:
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66M_{ee}
Resumo:
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 inverse fb of integrated luminosity of proton-antiproton collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the observed mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional parameter space of tan beta versus m(A).
Resumo:
We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu^{+} mu^{-1} that were produced in prompt or B-decay processes from ppbar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb^{-1} collected by the CDF II detector at Fermilab. For events with transverse momentum p_{T} (psi(2S)) > 2 GeV/c and rapidity |y(psi(2S))| psi(2S)X) Br(psi(2S) -> mu^{+} mu^{-}) to be 3.29 +- 0.04(stat.) +- 0.32(syst.) nb.
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 inverse fb of integrated luminosity of proton-antiproton collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the observed mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional parameter space of tan beta versus m(A).
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|