39 resultados para highly siderophile elements
Resumo:
This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.
Resumo:
Modern Christian theology has been at pain with the schism between the Bible and theology, and between biblical studies and systematic theology. Brevard Springs Childs is one of biblical scholars who attempt to dismiss this “iron curtain” separating the two disciplines. The present thesis aims at analyzing Childs’ concept of theological exegesis in the canonical context. In the present study I employ the method of systematic analysis. The thesis consists of seven chapters. Introduction is the first chapter. The second chapter attempts to find out the most important elements which exercise influence on Childs’ methodology of biblical theology by sketching his academic development during his career. The third chapter attempts to deal with the crucial question why and how the concept of the canon is so important for Childs’ methodology of biblical theology. In chapter four I analyze why and how Childs is dissatisfied with historical-critical scholarship and I point out the differences and similarities between his canonical approach and historical criticism. The fifth chapter attempts at discussing Childs’ central concepts of theological exegesis by investigating whether a Christocentric approach is an appropriate way of creating a unified biblical theology. In the sixth chapter I present a critical evaluation and methodological reflection of Childs’ theological exegesis in the canonical context. The final chapter sums up the key points of Childs’ methodology of biblical theology. The basic results of this thesis are as follows: First, the fundamental elements of Childs’ theological thinking are rooted in Reformed theological tradition and in modern theological neo-orthodoxy and in its most prominent theologian, Karl Barth. The American Biblical Theological Movement and the controversy between Protestant liberalism and conservatism in the modern American context cultivate his theological sensitivity and position. Second, Childs attempts to dismiss negative influences of the historical-critical method by establishing canon-based theological exegesis leading into confessional biblical theology. Childs employs terminology such as canonical intentionality, the wholeness of the canon, the canon as the most appropriate context for doing a biblical theology, and the continuity of the two Testaments, in order to put into effect his canonical program. Childs demonstrates forcefully the inadequacies of the historical-critical method in creating biblical theology in biblical hermeneutics, doctrinal theology, and pastoral practice. His canonical approach endeavors to establish and create post-critical Christian biblical theology, and works within the traditional framework of faith seeking understanding. Third, Childs’ biblical theology has a double task: descriptive and constructive, the former connects biblical theology with exegesis, the later with dogmatic theology. He attempts to use a comprehensive model, which combines a thematic investigation of the essential theological contents of the Bible with a systematic analysis of the contents of the Christian faith. Childs also attempts to unite Old Testament theology and New Testament theology into one unified biblical theology. Fourth, some problematic points of Childs’ thinking need to be mentioned. For instance, his emphasis on the final form of the text of the biblical canon is highly controversial, yet Childs firmly believes in it, he even regards it as the corner stone of his biblical theology. The relationship between the canon and the doctrine of biblical inspiration is weak. He does not clearly define whether Scripture is God’s word or whether it only “witnesses” to it. Childs’ concepts of “the word of God” and “divine revelation” remain unclear, and their ontological status is ambiguous. Childs’ theological exegesis in the canonical context is a new attempt in the modern history of Christian theology. It expresses his sincere effort to create a path for doing biblical theology. Certainly, it was just a modest beginning of a long process.
Resumo:
Many Gram-negative bacteria pathogenic to plants and animals possess type III secretion systems that are used to cause disease. Effector proteins are injected into host cells using the type III secretion machineries. Despite vigorous studies, the nature of the secretion signal for type III secreted proteins still remains elusive. Both mRNA and proteinaceous signals have been proposed. Findings on coupling of translation to secretion by the type III secretion systems are also still contradictory. This study dealt with the secretion signal of HrpA from Pseudomonas syringae pathovar tomato. HrpA is the major component of the type III secretion system-associated Hrp pilus and a substrate for the type III secretion systems. The secretion signal was shown to reside in the first 15 codons or amino acids, a location typical for type III secretion signals. Translation of HrpA in the absence of a functional type III secretion system was established, but it does not exclude the possibility of coupling of translation to secretion when the secretion apparatus is present. The hrpA transcripts from various unrelated plant pathogenic bacteria were shown to be extremely stable. The biological relevance of this observation is unknown, but possible explanations include the high prevalence of HrpA protein, an mRNA secretion signal or timing of secretion. The hrpA mRNAs are stable over a wide range of temperatures, in the absence of translating ribosomes and even in the heterologous host Escherichia coli. The untranslated regions (UTRs) of hrpA transcripts from at least 20 pathovars of Pseudomonas syringae are highly homologous, whilst their coding regions exhibit low similarity. The stable nature of hrpA messenger RNAs is likely to be due to the folding of their 5 and 3 UTRs. In silico the UTRs seem to form stem-loop structures, the hairpin structures in the 3 UTRs being rich in guanidine and cytosine residues. The stable nature of the hrpA transcript redirected the studies to the stabilization of heterologous transcripts and to the use of stable messenger RNAs in recombinant protein production. Fragments of the hrpA transcript can be used to confer stability on heterologous transcripts from several sources of bacterial and eukaryotic origin, and to elevate the levels of production of the corresponding recombinant proteins several folds. hrpA transcript stabilizing elements can be used for improving the yields of recombinant proteins even in Escherichia coli, one of the most commonly used industrial protein production hosts.
Resumo:
Growth is a fundamental aspect of life cycle of all organisms. Body size varies highly in most animal groups, such as mammals. Moreover, growth of a multicellular organism is not uniform enlargement of size, but different body parts and organs grow to their characteristic sizes at different times. Currently very little is known about the molecular mechanisms governing this organ-specific growth. The genome sequencing projects have provided complete genomic DNA sequences of several species over the past decade. The amount of genomic sequence information, including sequence variants within species, is constantly increasing. Based on the universal genetic code, we can make sense of this sequence information as far as it codes proteins. However, less is known about the molecular mechanisms that control expression of genes, and about the variations in gene expression that underlie many pathological states in humans. This is caused in part by lack of information about the second genetic code that consists of the binding specificities of transcription factors and the combinatorial code by which transcription factor binding sites are assembled to form tissue-specific and/or ligand-regulated enhancer elements. This thesis presents a high-throughput assay for identification of transcription factor binding specificities, which were then used to measure the DNA binding profiles of transcription factors involved in growth control. We developed ‘enhancer element locator’, a computational tool, which can be used to predict functional enhancer elements. A genome-wide prediction of human and mouse enhancer elements generated a large database of enhancer elements. This database can be used to identify target genes of signaling pathways, and to predict activated transcription factors based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c- and N-Myc genes, which has implications to organ specific growth control and tumor type specificity of oncogenes. Furthermore, we were able to locate a variation in a single nucleotide, which carries a susceptibility to colorectal cancer, to an enhancer element and propose a mechanism by which this SNP might be involved in generation of colorectal cancer.
Resumo:
Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.
Resumo:
Background
How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation.
Results
Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen.
Conclusions
We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.
Resumo:
Most of the existing research within the business network approach is based on companies that are operating on different levels within the same value chain, as a buyer and a supplier. Intercompetitor cooperation, i.e. cooperation between companies occupying the same level within different value chains, has not been studied to the same extent. Moreover scholars within the business network approach have usually described industrial relationships as long term, consisting of mutual commitment and trust. Industrial relationships are not static, but dynamic, and they contain situations of both harmony and conflict. There is consequently a need for more research both concerning intercompetitor cooperation and conflicts. The purpose of this study is to develop our theoretical and empirical understanding of the nature of conflicts in intercompetitor cooperation from a business network perspective. The focus of the study lies on issue and intensity of conflict. The issue of a conflict can be divided into cause and topic, while the intensity comprises the importance and outcome of a conflict. The empirical part of the study is based on two case studies of groups of cooperating competitors from two different industries. The applied research method is interviews. According to the findings of this study causes of conflicts in intercompetitor cooperation can be divided into three groups: focus, awareness and capacity. Topics of conflict can be related to domain, delivery, advertising or cooperation. Moreover the findings show that conflict situations may be grouped into not important, important or very important. Some conflicts may also be of varying importance, meaning that the importance varies from one point of time to another. Based on the findings of the study the outcome or status of a conflict can be analyzed both on a concrete and general level. The findings also indicate that several conflicts are partly hidden, which means that only one or some of the involved actors perceive the conflict. Furthermore several conflict situations can be related to external network actors.
Resumo:
In the markets-as-networks approach business networks are conceived as dynamic actor structures, giving focus to exchange relationships and actors’ capabilities to control and co-ordinate activities and resources. Researchers have shared an understanding that actors’ actions are crucial for the development of business networks and for network dynamics. However, researchers have mainly studied firms as business actors and excluded individuals, although both firms and individuals can be seen as business actors. This focus on firms as business actors has resulted in a paucity of research on human action and the exchange of intangible resources in business networks, e.g. social exchange between individuals in social networks. Consequently, the current conception of business networks fails to appreciate the richness of business actors, the human character of business action and the import of social action in business networks. The central assumption in this study is that business actors are multidimensional and that their specific constitution in any given situation is determined by human interaction in social networks. Multidimensionality is presented as a concept for exploring how business actors act in different situations and how actors simultaneously manage multiple identities: individual, organisational, professional, business and network identities. The study presents a model that describes the multidimensionality of actors in business networks and conceptualises the connection between social exchange and human action in business networks. Empirically the study explores the change that has taken place in pharmaceutical retailing in Finland during recent years. The phenomenon of emerging pharmacy networks is highly contemporary in the Nordic countries, where the traditional license-based pharmacy business is changing. The study analyses the development of two Finnish pharmacy chains, one integrated and one voluntary chain, and the network structures and dynamics in them. Social Network Analysis is applied to explore the social structures within the pharmacy networks. The study shows that emerging pharmacy networks are multifaceted phenomena where political, economic, social, cultural, and historical elements together contribute to the observed changes. Individuals have always been strongly present in the pharmacy business and the development of pharmacy networks provides an interesting example of human actors’ influence in the development of business networks. The dynamics or forces driving the network development can be linked to actors’ own economic and social motives for developing the business. The study highlights the central role of individuals and social networks in the development of the two studied pharmacy networks. The relation between individuals and social networks is reciprocal. The social context of every individual enables multidimensional business actors. The mix of various identities, both individual and collective identities, is an important part of network dynamics. Social networks in pharmacy networks create a platform for exchange and social action, and social networks enable and support business network development.