32 resultados para heart disease


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes is one of the diseases that largely determined by lifestyle factors. Coffee is one of the most consumed beverages in the world and recently released data suggest the effects of coffee consumption on type 2 diabetes. The objective of the present study was to evaluate the effects of habitual coffee consumption on various aspects of type 2 diabetes and its most common complications. This study is part of the national FINRISK studies. Baseline surveys were carried out between 1972 and 1997. The surveys covered two eastern regions in 1972 and 1977, but were expanded to include a third region in southwestern Finland in 1982, 1987, 1992, and 1997. The Helsinki capital area was included in the survey in 1992 and 1997 and the Oulu province, in northern Finland, in 1997. Each survey was drawn from an independent random sample of the national register of subjects aged 25-64. In 1997, an additional sample of subjects aged 65-74 was conducted. The blood pressure, weight, and height of subjects were measured. By using self-administered questionnaires data were collected on medical history, socioeconomic factors, physical activity, smoking habits, and alcohol, coffee, and tea consumption. Higher coffee consumption was associated with higher body mass index, occupational physical activity and cigarette smoking, and lower blood pressure, education level, leisure time physical activity, tea consumption and alcohol use. Age, body mass index, systolic blood pressure and current smoking were positively associated with the risk of type 2 diabetes, however, education, and occupational, commuting and leisure time physical activity were inversely associated. The significant inverse association between coffee consumption and the risk of type 2 diabetes was found in both sexes but the association was stronger in women. Coffee consumption was significantly and inversely associated with fasting glucose, 2-hour plasma glucose, fasting insulin, impaired fasting glucose, impaired glucose regulation, and hyperinsulinemia among both men and women and with isolated impaired glucose tolerance among women. Serum gamma-glutamyltransferase modified the association between coffee consumption and incident diabetes. Among subjects with high serum -glutamyltransferase (>75th percentile), coffee consumption showed an inverse association for women, as well as men and women combined. An inverse association also occurred between coffee consumption and the risk of total, cardiovascular disease, and coronary heart disease mortality among patients with type 2 diabetes. The results of this study showed that habitual coffee consumption may be associated with a reduced risk of type 2 diabetes. Coffee consumption may have some effects on several markers of glycemia, and may lower the incident of type 2 diabetes in high normal serum -glutamyltransferase levels. Total, cardiovascular disease, and coronary heart disease mortality rate among subjects with type 2 diabetes may also be reduced by coffee consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several hypnosis monitoring systems based on the processed electroencephalogram (EEG) have been developed for use during general anesthesia. The assessment of the analgesic component (antinociception) of general anesthesia is an emerging field of research. This study investigated the interaction of hypnosis and antinociception, the association of several physiological variables with the degree of intraoperative nociception, and aspects of EEG Bispectral Index Scale (BIS) monitoring during general anesthesia. In addition, EEG features and heart rate (HR) responses during desflurane and sevoflurane anesthesia were compared. A propofol bolus of 0.7 mg/kg was more effective than an alfentanil bolus of 0.5 mg in preventing the recurrence of movement responses during uterine dilatation and curettage (D C) after a propofol-alfentanil induction, combined with nitrous oxide (N2O). HR and several HR variability-, frontal electromyography (fEMG)-, pulse plethysmography (PPG)-, and EEG-derived variables were associated with surgery-induced movement responses. Movers were discriminated from non-movers mostly by the post-stimulus values per se or normalized with respect to the pre-stimulus values. In logistic regression analysis, the best classification performance was achieved with the combination of normalized fEMG power and HR during D C (overall accuracy 81%, sensitivity 53%, specificity 95%), and with the combination of normalized fEMG-related response entropy, electrocardiography (ECG) R-to-R interval (RRI), and PPG dicrotic notch amplitude during sevoflurane anesthesia (overall accuracy 96%, sensitivity 90%, specificity 100%). ECG electrode impedances after alcohol swab skin pretreatment alone were higher than impedances of designated EEG electrodes. The BIS values registered with ECG electrodes were higher than those registered simultaneously with EEG electrodes. No significant difference in the time to home-readiness after isoflurane-N2O or sevoflurane-N2O anesthesia was found, when the administration of the volatile agent was guided by BIS monitoring. All other early and intermediate recovery parameters were also similar. Transient epileptiform EEG activity was detected in eight of 15 sevoflurane patients during a rapid increase in the inspired volatile concentration, and in none of the 16 desflurane patients. The observed transient EEG changes did not adversely affect the recovery of the patients. Following the rapid increase in the inhaled desflurane concentration, HR increased transiently, reaching its maximum in two minutes. In the sevoflurane group, the increase was slower and more subtle. In conclusion, desflurane may be a safer volatile agent than sevoflurane in patients with a lowered seizure threshold. The tachycardia induced by a rapid increase in the inspired desflurane concentration may present a risk for patients with heart disease. Designated EEG electrodes may be superior to ECG electrodes in EEG BIS monitoring. When the administration of isoflurane or sevoflurane is adjusted to maintain BIS values at 50-60 in healthy ambulatory surgery patients, the speed and quality of recovery are similar after both isoflurane-N2O and sevoflurane-N2O anesthesia. When anesthesia is maintained by the inhalation of N2O and bolus doses of propofol and alfentanil in healthy unparalyzed patients, movement responses may be best avoided by ensuring a relatively deep hypnotic level with propofol. HR/RRI, fEMG, and PPG dicrotic notch amplitude are potential indicators of nociception during anesthesia, but their performance needs to be validated in future studies. Combining information from different sources may improve the discrimination of the level of nociception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atrial fibrillation is the most common arrhythmia requiring treatment. This Thesis investigated atrial fibrillation (AF) with a specific emphasis on atrial remodeling which was analysed from epidemiological, clinical and magnetocardiographic (MCG) perspectives. In the first study we evaluated in real-life clinical practice a population-based cohort of AF patients referred for their first elective cardioversion (CV). 183 consecutive patients were included of whom in 153 (84%) sinus rhythm (SR) was restored. Only 39 (25%) of those maintained SR for one year. Shorter duration of AF and the use of sotalol were the only characteristics associated with better restoration and maintenance of SR. During the one-year follow-up 40% of the patients ended up in permanent AF. Female gender and older age were associated with the acceptance of permanent AF. The LIFE-trial was a prospective, randomised, double-blinded study that evaluated losartan and atenolol in patients with hypertension and left ventricular hypertrophy (LVH). Of the 8,851 patients with SR at baseline and without a history of AF 371 patients developed new-onset AF during the study. Patients with new-onset AF had an increased risk of cardiac events, stroke, and increased rate of hospitalisation for heart failure. Younger age, female gender, lower systolic blood pressure, lesser LVH in ECG and randomisation to losartan therapy were independently associated with lower frequency of new-onset AF. The impact of AF on morbidity and mortality was evaluated in a post-hoc analysis of the OPTIMAAL trial that compared losartan with captopril in patients with acute myocardial infarction (AMI) and evidence of LV dysfunction. Of the 5,477 randomised patients 655 had AF at baseline, and 345 patients developed new AF during the follow-up period, median 3.0 years. Older patients and patients with signs of more serious heart disease had and developed AF more often. Patients with AF at baseline had an increased risk of mortality (hazard ratio (HR) of 1.32) and stroke (HR 1.77). New-onset AF was associated with increased mortality (HR 1.82) and stroke (HR of 2.29). In the fourth study we assessed the reproducibility of our MCG method. This method was used in the fifth study where 26 patients with persistent AF had immediately after the CV longer P-wave duration and higher energy of the last portion of atrial signal (RMS40) in MCG, increased P-wave dispersion in SAECG and decreased pump function of the atria as well as enlarged atrial diameter in echocardiography compared to age- and disease-matched controls. After one month in SR, P-wave duration in MCG still remained longer and left atrial (LA) diameter greater compared to the controls, while the other measurements had returned to the same level as in the control group. In conclusion is not a rare condition in either general population or patients with hypertension or AMI, and it is associated with increased risk of morbidity and mortality. Therefore, atrial remodeling that increases the likelihood of AF and also seems to be relatively stable has to be identified and prevented. MCG was found to be an encouraging new method to study electrical atrial remodeling and reverse remodeling. RAAS-suppressing medications appear to be the most promising method to prevent atrial remodeling and AF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is the most common tachyarrhythmia and is associated with substantial morbidity, increased mortality and cost. The treatment modalities of AF have increased, but results are still far from optimal. More individualized therapy may be beneficial. Aiming for this calls improved diagnostics. Aim of this study was to find non-invasive parameters obtained during sinus rhythm reflecting electrophysiological patterns related to propensity to AF and particularly to AF occurring without any associated heart disease, lone AF. Overall 240 subjects were enrolled, 136 patients with paroxysmal lone AF and 104 controls (mean age 45 years, 75% males). Signal measurements were performed by non-invasive magnetocardiography (MCG) and by invasive electroanatomic mapping (EAM). High-pass filtering techniques and a new method based on a surface gradient technique were adapted to analyze atrial MCG signal. The EAM was used to elucidate atrial activation in patients and as a reference for MCG. The results showed that MCG mapping is an accurate method to detect atrial electrophysiologic properties. In lone paroxysmal AF, duration of the atrial depolarization complex was marginally prolonged. The difference was more obvious in women and was also related to interatrial conduction patterns. In the focal type of AF (75%), the root mean square (RMS) amplitudes of the atrial signal were normal, but in AF without demonstrable triggers the late atrial RMS amplitudes were reduced. In addition, the atrial characteristics tended to remain similar even when examined several years after the first AF episodes. The intra-atrial recordings confirmed the occurrence of three distinct sites of electrical connection from right to left atrium (LA): the Bachmann bundle (BB), the margin of the fossa ovalis (FO), and the coronary sinus ostial area (CS). The propagation of atrial signal could also be evaluated non-invasively. Three MCG atrial wave types were identified, each of which represented a distinct interatrial activation pattern. In conclusion, in paroxysmal lone AF, active focal triggers are common, atrial depolarization is slightly prolonged, but with a normal amplitude, and the arrhythmia does not necessarily lead to electrical or mechanical dysfunction of the atria. In women the prolongation of atrial depolarization is more obvious. This may be related to gender differences in presentation of AF. A significant minority of patients with lone AF lack frequent focal triggers, and in them, the late atrial signal amplitude is reduced, possibly signifying a wider degenerative process in the LA. In lone AF, natural impulse propagation to LA during sinus rhythm goes through one or more of the principal pathways described. The BB is the most common route, but in one-third, the earliest LA activation occurs outside the BB. Susceptibility to paroxysmal lone AF is associated with propagation of the atrial signal via the margin of the FO or via multiple pathways. When conduction occurs via the BB, it is related with prolonged atrial activation. Thus, altered and alternative conduction pathways may contribute to pathogenesis of lone AF. There is growing evidence of variability in genesis of AF also within lone paroxysmal AF. Present study suggests that this variation may be reflected in cardiac signal pattern. Recognizing the distinct signal profiles may assist in understanding the pathogenesis of AF and identifying subgroups for patient-tailored therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) patients have premature mortality. Contrary to the general population, mortality in RA has not declined over time. This study aimed to evaluate determinants of mortality in RA by examining causes of death (CoDs) over time, accuracy of CoD diagnoses, and contribution of RA medication to CoDs. This study further evaluated detection rate of reactive systemic amyloid A amyloidosis, which is an important contributor to RA mortality. CoDs were examined in 960 RA patients between 1971 and 1991 (Study population A) and in 369 RA patients autopsied from 1952 to 1991, with non-RA patients serving as the reference cases (Study population B). In Study population B, CoDs by the clinician before autopsy were compared to those by the pathologist at autopsy to study accuracy of CoD diagnoses. In Study population B, autopsy tissue samples were re-examined systematically for amyloidosis (90% of patients) and clinical data for RA patients was studied from 1973. RA patients died most frequently of cardiovascular diseases (CVDs), infections, and RA. RA deaths declined over time. Coronary deaths showed no major change in Study population A, but, in Study population B, coronary deaths in RA patients increased from 1952 to 1991, while non-RA cases had a decrease in coronary deaths starting in the 1970s. Between CoD diagnoses by the clinician and those by the pathologist, RA patients had lower agreement than non-RA cases regarding cardiovascular (Kappa reliability measure: 0.31 vs. 0.51) and coronary deaths (0.33 vs. 0.46). Use of disease modifying anti-rheumatic drugs was not associated with any CoD. In RA patients, re-examination of autopsy tissue samples doubled the prevalence of amyloid compared with the original autopsy: from 18% to 30%. In the amyloid-positive RA patients, amyloidosis was diagnosed before autopsy in only 37%; and they had higher inflammatory levels and longer duration of RA than amyloid-negative RA patients. Of the RA patients with amyloid, only half had renal failure or proteinuria during lifetime. In RA, most important determinants of mortality were CVDs, RA, and infections. In RA patients, RA deaths decreased over time, but this was not true for coronary deaths. Coronary death being less accurately diagnosed in RA may indicate that coronary heart disease (CHD) often goes unrecognized during lifetime. Thus, active search for CHD and its effective treatment is important to reduce cardiovascular mortality. Reactive amyloidosis may often go undetected. In RA patients with proteinuria or renal failure, as well as with active and long-lasting RA, a systematic search for amyloid is important to enable early diagnosis and early enhancement of therapy. This is essential to prevent clinical manifestations of amyloidosis such as renal failure, which has a poor prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the studies was to improve the diagnostic capability of electrocardiography (ECG) in detecting myocardial ischemic injury with a future goal of an automatic screening and monitoring method for ischemic heart disease. The method of choice was body surface potential mapping (BSPM), containing numerous leads, with intention to find the optimal recording sites and optimal ECG variables for ischemia and myocardial infarction (MI) diagnostics. The studies included 144 patients with prior MI, 79 patients with evolving ischemia, 42 patients with left ventricular hypertrophy (LVH), and 84 healthy controls. Study I examined the depolarization wave in prior MI with respect to MI location. Studies II-V examined the depolarization and repolarization waves in prior MI detection with respect to the Minnesota code, Q-wave status, and study V also with respect to MI location. In study VI the depolarization and repolarization variables were examined in 79 patients in the face of evolving myocardial ischemia and ischemic injury. When analyzed from a single lead at any recording site the results revealed superiority of the repolarization variables over the depolarization variables and over the conventional 12-lead ECG methods, both in the detection of prior MI and evolving ischemic injury. The QT integral, covering both depolarization and repolarization, appeared indifferent to the Q-wave status, the time elapsed from MI, or the MI or ischemia location. In the face of evolving ischemic injury the performance of the QT integral was not hampered even by underlying LVH. The examined depolarization and repolarization variables were effective when recorded in a single site, in contrast to the conventional 12-lead ECG criteria. The inverse spatial correlation of the depolarization and depolarization waves in myocardial ischemia and injury could be reduced into the QT integral variable recorded in a single site on the left flank. In conclusion, the QT integral variable, detectable in a single lead, with optimal recording site on the left flank, was able to detect prior MI and evolving ischemic injury more effectively than the conventional ECG markers. The QT integral, in a single-lead or a small number of leads, offers potential for automated screening of ischemic heart disease, acute ischemia monitoring and therapeutic decision-guiding as well as risk stratification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Congenital long QT syndrome (LQTS) with an estimated prevalence of 1:2000-1:10 000 manifests with prolonged QT interval on electrocardiogram and risk for ventricular arrhythmias and sudden death. Several ion channel genes and hundreds of mutations in these genes have been identified to underlie the disorder. In Finland, four LQTS founder mutations of potassium channel genes account for up to 40-70% of genetic spectrum of LQTS. Acquired LQTS has similar clinical manifestations, but often arises from usage of QT-prolonging medication or electrolyte disturbances. A prolonged QT interval is associated with increased morbidity and mortality not only in clinical LQTS but also in patients with ischemic heart disease and in the general population. The principal aim of this study was to estimate the actual prevalence of LQTS founder mutations in Finland and to calculate their effect on QT interval in the Finnish background population. Using a large population-based sample of over 6000 Finnish individuals from the Health 2000 Survey, we identified LQTS founder mutations KCNQ1 G589D (n=8), KCNQ1 IVS7-2A>G (n=1), KCNH2 L552S (n=2), and KCNH2 R176W (n=16) in 27 study participants. This resulted in a weighted prevalence estimate of 0.4% for LQTS in Finland. Using a linear regression model, the founder mutations resulted in a 22- to 50-ms prolongation of the age-, sex-, and heart rate-adjusted QT interval. Collectively, these data suggest that one of 250 individuals in Finland may be genetically predisposed to ventricular arrhythmias arising from the four LQTS founder mutations. A KCNE1 D85N minor allele with a frequency of 1.4% was associated with a 10-ms prolongation in adjusted QT interval and could thus identify individuals at increased risk of ventricular arrhythmias at the population level. In addition, the previously reported associations of KCNH2 K897T, KCNH2 rs3807375, and NOS1AP rs2880058 with QT interval duration were confirmed in the present study. In a separate study, LQTS founder mutations were identified in a subgroup of acquired LQTS, providing further evidence that congenital LQTS gene mutations may underlie acquired LQTS. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by exercise-induced ventricular arrhythmias in a structurally normal heart and results from defects in the cardiac Ca2+ signaling proteins, mainly ryanodine receptor type 2 (RyR2). In a patient population of typical CPVT, RyR2 mutations were identifiable in 25% (4/16) of patients, implying that noncoding variants or other genes are involved in CPVT pathogenesis. A 1.1 kb RyR2 exon 3 deletion was identified in two patients independently, suggesting that this region may provide a new target for RyR2-related molecular genetic studies. Two novel RyR2 mutations showing a gain-of-function defect in vitro were identified in three victims of sudden cardiac death. Extended pedigree analyses revealed some surviving mutation carriers with mild structural abnormalities of the heart and resting ventricular arrhythmias suggesting that not all RyR2 mutations lead to a typical CPVT phenotype, underscoring the relevance of tailored risk stratification of a RyR2 mutation carrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are, in developed countries, the leading cause of mortality. The majority of premature deaths and disability caused by CVD are due to atherosclerosis, a degenerating inflammatory disease affecting arterial walls. Early identification of lesions and initiation of treatment is crucial because the first manifestations quite often are major disabling cardiovascular events. Methods of finding individuals at high risk for these events are under development. Because magnetic resonance imaging (MRI) is an excellent non-invasive tool to study the structure and function of vascular system, we sought to discover whether existing MRI methods are able to show any difference in aortic and intracranial atherosclerotic lesions between patients at high risk for atherosclerosis and healthy controls. Our younger group (age 6-48) comprised 39 symptomless familial hypercholesterolemia (FH) patients and 25 healthy controls. Our older group (age 48-64) comprised 19 FH patients and 18 type 2 diabetes mellitus (DM) patients with coronary heart disease (CHD) and 29 healthy controls. Intracranial and aortic MRI was compared with carotid and femoral ultrasound (US). In neither age-group did MRI reveal any difference in the number of ischemic brain lesions or white matter hyperintensities (WMHIs) - possible signs of intracranial atherosclerosis - between patients and controls. Furthermore, MRI showed no difference in the structure or function of the aorta between FH patients and controls in either group. DM patients had lower compliance of the aorta than did controls, while no difference appeared between DM and FH patients. However, ultrasound showed greater plaque burden and increased thickness of carotid arterial walls in FH and DM patients in both age-groups, suggesting a more advanced atherosclerosis. The mortality of FH patients has decreased substantially after the late 1980´s when statin treatment became available. With statins, the progression of atherosclerotic lesions slows. We think that this, in concert with improvements in treatment of other risk factors, is one reason for the lack of differences between FH patients and controls in MRI measurements of the aorta and brain despite the more advanced disease of the carotid arteries assessed with US. Furthermore, whereas atherosclerotic lesions between different vascular territories correlate, differences might still exist in the extent and location of these lesions among different diseases. Small (<5 mm in diameter) WMHIs are more likely a phenomenon related to aging, but the larger ones may be the ones related to CVD and may be intermediate surrogates of stroke. The image quality in aortic imaging, although constantly improving, is not yet optimal and thus is a source of bias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae can cause acute respiratory infections including pneumonia. Repeated and persistent Chlamydia infections occur and persistent C. pneumoniae infection may have a role in the pathogenesis of atherosclerosis and coronary heart disease and may also contribute to the development of chronic inflammatory lung diseases like chronic obstructive pulmonary disease (COPD) and asthma. In this thesis in vitro models for persistent C. pneumonia infection were established in epithelial and monocyte/macrophage cell lines. Expression of host cell genes in the persistent C. pneumoniae infection model of epithelial cells was studied by microarray and RT-PCR. In the monocyte/macrophage infection model expression of selected C. pneumoniae genes were studied by RT-PCR and immunofluorescence microscopy. Chlamydia is able to modulate host cell gene expression and apoptosis of host cells, which may assist Chlamydia to evade the host cells' immune responses. This, in turn, may lead to extended survival of the organism inside epithelial cells and promote the development of persistent infection. To simulate persistent C. pneumoniae infection in vivo, we set up a persistent infection model exposing the HL cell cultures to IFN-gamma. When HL cell cultures were treated with moderate concentration of IFN-gamma, the replication of C. pneumoniae DNA was unaffected while differentiation into infectious elementary bodies (EB) was strongly inhibited. By transmission electron microscopy small atypical inclusions were identified in IFN-gamma treated cultures. No second cycle of infection was observed in cells exposed to IFN-gamma , whereas C. pneumoniae was able to undergo a second cycle of infection in unexposed HL cells. Although monocytic cells can naturally restrict chlamydial growth, IFN-gamma further reduced production of infectious C. pneumoniae in Mono Mac 6 cells. Under both studied conditions no second cycle of infection could be detected in monocytic cell line suggesting persistent infection in these cells. As a step toward understanding the role of host genes in the development and pathogenesis of persistent C. pneumoniae infection, modulation of host cell gene expression during IFN-gamma induced persistent infection was examined and compared to that seen during active C. pneumoniae infection or IFN-gamma treatment. Total RNA was collected at 6 to 150 h after infection of an epithelial cell line (HL) and analyzed by a cDNA array (available at that time) representing approximately 4000 human transcripts. In initial analysis 250 of the 4000 genes were identified as differentially expressed upon active and persistent chlamydial infection and IFN-gamma treatment. In persistent infection more potent up-regulation of many genes was observed in IFN-gamma induced persistent infection than in active infection or in IFN-gamma treated cell cultures. Also sustained up-regulation was observed for some genes. In addition, we could identify nine host cell genes whose transcription was specifically altered during the IFN-gamma induced persistent C. pneumoniae infection. Strongest up-regulation in persistent infection in relation to controls was identified for insulin like growth factor binding protein 6, interferon-stimulated protein 15 kDa, cyclin D1 and interleukin 7 receptor. These results suggest that during persistent infection, C. pneumoniae reprograms the host transcriptional machinery regulating a variety of cellular processes including adhesion, cell cycle regulation, growth and inflammatory response, all of which may play important roles in the pathogenesis of persistent C. pneumoniae infection. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that the bacterium can also infect monocytic cells in vivo and thereby monocytes can assist the spread of infection from the lungs to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells and that IFN-gamma has a less significant effect on C. pneumoniae transcription in monocytes. Furthermore, our study shows that type III secretion system (T3SS) related genes are transcribed and that Chlamydia possesses a functional T3SS during infection in monocytes. Since C. pneumoniae infection in monocytes has been implicated to have reduced antibiotic susceptibility, this creates opportunities for novel therapeutics targeting T3SS in the management of chlamydial infection in monocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS An independent, powerful coronary heart disease (CHD) predictor is a low level of high-density lipoprotein cholesterol (HDL-C). Discoidal preβ-HDL particles and large HDL2 particles are the primary cholesterol acceptors in reverse cholesterol transport, a key anti-atherogenic HDL mechanism. The quality of HDL subspecies may provide better markers of HDL functionality than does HDL-C alone. We aimed I) to study whether alterations in the HDL subspecies profile exist in low-HDL-C subjects II) to explore the relationship of any changes in HDL subspecies profile in relation to atherosclerosis and metabolic syndrome; III) to elucidate the impact of genetics and acquired obesity on HDL subspecies distribution. SUBJECTS The study consisted of 3 cohorts: A) Finnish families with low HDL-C and premature CHD (Study I: 67 subjects with familial low HDL-C and 64 controls; Study II: 83 subjects with familial low HDL-C, 65 family members with normal HDL-C, and 133 controls); B) a cohort of 113 low- and 133 high-HDL-C subjects from the Health 2000 Health Examination Survey carried out in Finland (Study III); and C) a Finnish cohort of healthy young adult twins (52 monozygotic and 89 dizygotic pairs) (Study IV). RESULTS AND CONCLUSIONS The subjects with familial low HDL-C had a lower preβ-HDL concentration than did controls, and the low-HDL-C subjects displayed a dramatic reduction (50-70%) in the proportion of large HDL2b particles. The subjects with familial low HDL-C had increased carotid atherosclerosis measured as intima-media-thickness (IMT), and HDL2b particles correlated negatively with IMT. The reduction in both key cholesterol acceptors, preβ-HDL and HDL2 particles, supports the concept of impaired reverse cholesterol transport contributing to the higher CHD risk in low-HDL-C subjects. The family members with normal HDL-C and the young adult twins with acquired obesity showed a reduction in large HDL2 particles and an increase in small HDL3 particles, which may be the first changes leading to the lowering of HDL-C. The low-HDL-C subjects had a higher serum apolipoprotein E (apoE) concentration, which correlated positively with the metabolic syndrome components (waist circumference, TG, and glucose), highlighting the need for a better understanding of apoE metabolism in human atherosclerosis. In the twin study, the increase in small HDL3b particles was associated with obesity independent of genetic effects. The heritability estimate, of 73% for HDL-C and 46 to 63% for HDL subspecies, however, demonstrated a strong genetic influence. These results suggest that the relationship between obesity and lipoproteins depends on different elements in each subject. Finally, instead of merely elevating HDL-C, large HDL2 particles and discoidal preβ-HDL particles may provide beneficial targets for HDL-targeted therapy.