119 resultados para genetic transformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity increases the risk for several conditions, including type 2 diabetes mellitus, cardiovascular disease, hypertension, osteoarthirits and certain types of cancer. Twin- and family studies have shown that there is a major genetic component in the determination of body mass. In recent years several technological and scientific advance have been made in obesity research. For instance, novel replicated loci have been revealed by a number of genome wide association studies. This thesis aimed to investigate the association of genetic factors and obesity-related quantitative traits. The first study investigated the role of the lactase gene in anthropometric traits. We genetically defined lactose persistence by genotyping 31 720 individuals of European descent. We found that lactase persistence was significantly correlated with weight and body mass index but not with height. In the second study we performed the largest whole genome linkage scan for body mass index to date. The sample consisted of 4401 twin families and 10 535 individuals from six European countries. We found supporting evidence for two loci (3q29 and 7q36). We observed that the heritability estimate increased substantially when additional family members were removed from the analyses, which suggests reduced environmental variance in the twin sample. In the third study we assessed metabonomic, transcriptomic and genomic variation in a Finnish population cohort of 518 individuals. We formed gene expression networks to portray pathways and showed that a set of highly correlated genes of an inflammatory pathway associated with 80 serum metabolites (of 134 quantified measures). Strong association was found, for example, with several lipoprotein subclasses. We inferred causality by using genetic variation as anchors. The expression of the network genes was found to be dependent on the circulatory metabolite concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, two separate single nucleotide polymorphism (SNP) genotyping techniques were set up at the Finnish Genome Center, pooled genotyping was evaluated as a screening method for large-scale association studies, and finally, the former approaches were used to identify genetic factors predisposing to two distinct complex diseases by utilizing large epidemiological cohorts and also taking environmental factors into account. The first genotyping platform was based on traditional but improved restriction-fragment-length-polymorphism (RFLP) utilizing 384-microtiter well plates, multiplexing, small reaction volumes (5 µl), and automated genotype calling. We participated in the development of the second genotyping method, based on single nucleotide primer extension (SNuPeTM by Amersham Biosciences), by carrying out the alpha- and beta tests for the chemistry and the allele-calling software. Both techniques proved to be accurate, reliable, and suitable for projects with thousands of samples and tens of markers. Pooled genotyping (genotyping of pooled instead of individual DNA samples) was evaluated with Sequenom s MassArray MALDI-TOF, in addition to SNuPeTM and PCR-RFLP techniques. We used MassArray mainly as a point of comparison, because it is known to be well suited for pooled genotyping. All three methods were shown to be accurate, the standard deviations between measurements being 0.017 for the MassArray, 0.022 for the PCR-RFLP, and 0.026 for the SNuPeTM. The largest source of error in the process of pooled genotyping was shown to be the volumetric error, i.e., the preparation of pools. We also demonstrated that it would have been possible to narrow down the genetic locus underlying congenital chloride diarrhea (CLD), an autosomal recessive disorder, by using the pooling technique instead of genotyping individual samples. Although the approach seems to be well suited for traditional case-control studies, it is difficult to apply if any kind of stratification based on environmental factors is needed. Therefore we chose to continue with individual genotyping in the following association studies. Samples in the two separate large epidemiological cohorts were genotyped with the PCR-RFLP and SNuPeTM techniques. The first of these association studies concerned various pregnancy complications among 100,000 consecutive pregnancies in Finland, of which we genotyped 2292 patients and controls, in addition to a population sample of 644 blood donors, with 7 polymorphisms in the potentially thrombotic genes. In this thesis, the analysis of a sub-study of pregnancy-related venous thromboses was included. We showed that the impact of factor V Leiden polymorphism on pregnancy-related venous thrombosis, but not the other tested polymorphisms, was fairly large (odds ratio 11.6; 95% CI 3.6-33.6), and increased multiplicatively when combined with other risk factors such as obesity or advanced age. Owing to our study design, we were also able to estimate the risks at the population level. The second epidemiological cohort was the Helsinki Birth Cohort of men and women who were born during 1924-1933 in Helsinki. The aim was to identify genetic factors that might modify the well known link between small birth size and adult metabolic diseases, such as type 2 diabetes and impaired glucose tolerance. Among ~500 individuals with detailed birth measurements and current metabolic profile, we found that an insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene was associated with the duration of gestation, and weight and length at birth. Interestingly, the ACE insertion allele was also associated with higher indices of insulin secretion (p=0.0004) in adult life, but only among individuals who were born small (those among the lowest third of birth weight). Likewise, low birth weight was associated with higher indices of insulin secretion (p=0.003), but only among carriers of the ACE insertion allele. The association with birth measurements was also found with a common haplotype of the glucocorticoid receptor (GR) gene. Furthermore, the association between short length at birth and adult impaired glucose tolerance was confined to carriers of this haplotype (p=0.007). These associations exemplify the interaction between environmental factors and genotype, which, possibly due to altered gene expression, predisposes to complex metabolic diseases. Indeed, we showed that the common GR gene haplotype associated with reduced mRNA expression in thymus of three individuals (p=0.0002).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia is a severe psychotic disorder affecting 0.5-1 % of the population. The disorder is characterized by hallucinations; delusions; disorganized behavior and speech; avolition; anhedonia; flattened affect and cognitive deficits. The etiology of the disorder is complex with evidence for multiple genes contributing to the onset of the disorder along with environmental factors. DISC1 is one of the most promising candidate genes for schizophrenia. It codes for a protein which takes part in numerous molecular interactions along several pathways. This network, termed as the DISC1 pathway, is evidently important for the development and maturation of the central nervous system from the embryo until young adulthood. Disruption at these pathways is thought to predispose schizophrenia. In the present study, we have studied the DISC1 pathway in the etiology of schizophrenia in the Finnish population. We have utilized large Finnish samples; the schizophrenia family sample where DISC1 was originally shown to associate with schizophrenia and the Northern Finland birth cohort 1966 (NFBC66). Several DISC1 binding partners displayed evidence for association in the family sample along with DISC1. Through a genome-wide linkage study, we found a significant linkage signal to a locus where a DISC1 binding partner NDE1 is located at the carriers of a certain DISC1 risk variant. In a follow-up study, genetic markers in NDE1 displayed significant evidence for association with schizophrenia. Further exploration of association between 11 genes of the DISC1 pathway and schizophrenia led to recognition of novel variants in NDEL1, PDE4B and PDE4D that significantly either increased or decreased the risk for schizophrenia. Further, we found evidence that DISC1 itself has a significant role in the human mental functioning even in the healthy population. Variants in DISC1 had a significant effect on anhedonia which is a trait present at everybody but is in its severe form one of the main symptoms of schizophrenia and correlates with the risk of developing the disorder. Further, utilizing genome-wide marker data, we recognized three genes; MIR620; CCDC141 and LCT; that are closely related to the DISC1 pathway but which effects on anhedonia were observable only at the individuals who carried these specific DISC1 variants. Our findings significantly add up to the previous evidence for the involvement of DISC1 and the DISC1 pathway in the etiology of schizophrenia and psychosis. Our results support the concept of a number of DISC1 pathway related genes contributing in the etiology of schizophrenia along with DISC1 and provide new candidates for the studies of schizophrenia. Our findings also significantly increase the importance of DISC1 itself as having a role in psychological functioning in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Both environmental factors and several predisposing genes are required to generate MS. Despite intensive research these risk factors are still largely unknown, the pathogenesis of MS demyelination is poorly understood, and no curative treatment exists. Both prevalence and familial occurrence of MS are exceptionally high in a Finnish population subisolate, Southern Ostrobothnia, presumably due to enrichment of predisposing genetic variants within this region. Previous linkage scan on MS pedigrees from Southern Ostrobothnia detected three main MS loci on chromosomes 5p, 6p (HLA) and 17q. Linkage studies in other populations have also provided independent evidence for the location of MS susceptibility genes in these regions. Further, these loci are syntenic to the experimental autoimmune encephalomyelitis (EAE) susceptibility loci of rodents. In this thesis work an effort was made to localize MS predisposing alleles of the linked loci outside the HLA region by studying familial MS cases from the Southern Ostrobothnia isolate. Analysis of the 5p locus revealed one region, flanking the complement component 7 (C7) gene. The identified relatively rare haplotype seems to have a fairly large effect on genetic susceptibility of MS (frequency MS 12%, controls 4%; p=0.000003, OR=2.73). Evidence for association with alleles of the region and MS was seen also in more heterogeneous populations. Convincingly, plasma C7 protein levels and complement activity correlated with the risk haplotype identified. The finding stimulated us to study other complement cascade genes in MS. No evidence for association could be observed with the complement component coding genes outside 5p. A scan of the 17q locus provided evidence for association with variants of the protein kinase C alpha (PRKCA) gene (p=0.0001). Modest evidence for association with PRKCA was observed also in Canadian MS families. Finally we used a candidate gene based approach to identify potential MS loci. Mutations of DAP12 and TREM2 cause a recessively inherited CNS white matter disease PLOSL. Interestingly, DAP12 and TREM2 are located in MS regions on 6p and 19q, and we tested them as potential candidate genes in the Finnish MS sample. No evidence for association with MS was observed. This thesis provides an example of how extended families from special populations can be utilized in fine-mapping of the linked loci. A first relatively rare MS variant was identified utilizing the strength of a Finnish population subisolate. This variant seems to have an effect on activity of the complement system, which has previously been suggested to have an important role in the pathogenesis of MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a hereditary tumour predisposition syndrome. Its phenotype includes benign cutaneous and uterine leiomyomas (CLM, ULM) with high penetrance and rarer renal cell cancer (RCC), most commonly of papillary type 2 subtype. Over 130 HLRCC families have been identified world-wide but the RCC phenotype seems to concentrate in families from Finland and North America for unknown reasons. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. FH encodes the enzyme fumarase from mitochondrial citric acid cycle. Fumarase enzyme activity or type or site of the FH mutation are unassociated with disease phenotype. The strongest evidence for tumourigenesis mechanism in HLRCC supports a hypoxia inducible factor driven process called pseudohypoxia resulting from accumulation of the fumarase substrate fumarate. In this study, to assess the importance of gene- or exon-level deletions or amplifications of FH in patients with HLRCC-associated phenotypes, multiplex ligation-dependent probe amplification (MLPA) method was used. One novel FH mutation, deletion of exon 1, was found in a Swedish male patient with an evident HLRCC phenotype with CLM, RCC, and a family history of ULM and RCC. Six other patients with CLM and 12 patients with only RCC or uterine leiomyosarcoma (ULMS) remained FH mutation-negative. These results suggest that copy number aberrations of FH or its exons are an infrequent cause of HLRCC and that only co-occurrence of benign tumour types justifies FH-mutation screening in RCC or ULMS patients. Determination of the genomic profile of 11 HLRCC-associated RCCs from Finnish patients was performed by array comparative genomic hybridization. The most common copy number aberrations were gains of 2, 7, and 17 and losses of 13q12.3-q21.1, 14, 18, and X. When compared to aberrations of sporadic papillary RCCs, HLRCC-associated RCCs harboured a distinct DNA copy number profile and lacked many of the changes characterizing the sporadic RCCs. The findings suggest a divergent molecular pathway for tumourigenesis of papillary RCCs in HLRCC. In order to find a genetic modifier of RCC risk in HLRCC, genome-wide linkage and identical by descent (IBD) analysis studies were performed in Finnish HLRCC families with microsatellite marker mapping and SNP-array platforms. The linkage analysis identified only one locus of interest, the FH gene locus in 1q43, but no mutations were found in the genes of the region. IBD analysis yielded no convincing haplotypes shared by RCC patients. Although these results do not exclude the existence of a genetic modifier for RCC risk in HLRCC, they emphasize the role of FH mutations in the malignant tumourigenesis of HLRCC. To study the benign tumours in HLRCC, genome-wide DNA copy number and gene expression profiles of sporadic and HLRCC ULMs were defined with modern SNP- and gene-expression array platforms. The gene expression array suggests novel genes involved in FH-deficient ULM tumourigenesis and novel genes with putative roles in propagation of sporadic ULM. Both the gene expression and copy number profiles of HLRCC ULMs differed from those of sporadic ULMs indicating distinct molecular basis of the FH-deficient HLRCC tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Populations in developed countries are ageing fast. The elderly have the greatest incidence of de-mentia, and thus the increase in the number of demented individuals, increases the immediate costs for the governments concerning healthcare and hospital treatment. Attention is being paid to disorders behind cognitive impairment with behavioural and psychological symptoms, which are enormous contributors to the hospital care required for the elderly. The highest dreams are in prevention; however, before discovering the tools for preventing dementia, the pathogenesis behind dementia disorders needs to be understood. Dementia with Lewy bodies (DLB), a relatively recently discovered dementia disorder compared to Alzheimer’s disease (AD), is estimated to account for up to one third of primary degenerative dementia, thus being the second most common cause of dementia in the elderly. Nevertheless, the impact of neuropathological and genetic findings on the clinical syndrome of DLB is not fully established. In this present series of studies, the frequency of neuropathological findings of DLB and its relation to the clinical findings was evaluated in a cohort of subjects with primary degenerative dementia and in a population-based prospective cohort study of individuals aged 85 years or older. α-synuclein (αS) immunoreactive pathology classifiable according to the DLB consensus criteria was found in one fourth of the primary degenerative dementia subjects. In the population-based study, the corresponding figure was one third of the population, 38% of the demented and one fifth of the non-demented very elderly Finns. However, in spite of the frequent discovery of αS pathology, its association with the clinical symptoms was quite poor. Indeed, the common clinical features of DLB, hypokinesia and visual hallucinations, associated better with the severe neurofibrillary AD-type pathology than with the extensive (diffuse neocortical) αS pathology when both types of pathology were taken into account. The severity of the neurofibrillary AD-type pathology (Braak stage) associated with the extent of αS pathology in the brain. In addition, the genetic study showed an interaction between tau and αS; common variation in the αS gene (SNCA) associated significantly with the severity of the neurofibrillary AD-type pathology and nominally significantly with the extensive αS pathology. Further, the relevance and temporal course of the substantia nigra (SN) degeneration and of the spinal cord αS pathology were studied in relation to αS pathology in the brain. The linear association between the extent of αS pathology in the brain and the neuron loss in SN suggests that in DLB the degeneration of SN proceeds as the αS pathology extends from SN to the neocortex instead of early destruction of SN seen in Parkinson’s disease (PD). Furthermore, the extent of αS pathology in the brain associated with the severity of αS pathology in the thoracic and sacral autonomic nuclei of the spinal cord. The thoracic αS pathology was more common and more severe compared to sacral cord, suggesting that the progress of αS pathology proceeds downwards from the brainstem towards the sacral spinal cord.