19 resultados para film mode matching
Resumo:
The core aim of machine learning is to make a computer program learn from the experience. Learning from data is usually defined as a task of learning regularities or patterns in data in order to extract useful information, or to learn the underlying concept. An important sub-field of machine learning is called multi-view learning where the task is to learn from multiple data sets or views describing the same underlying concept. A typical example of such scenario would be to study a biological concept using several biological measurements like gene expression, protein expression and metabolic profiles, or to classify web pages based on their content and the contents of their hyperlinks. In this thesis, novel problem formulations and methods for multi-view learning are presented. The contributions include a linear data fusion approach during exploratory data analysis, a new measure to evaluate different kinds of representations for textual data, and an extension of multi-view learning for novel scenarios where the correspondence of samples in the different views or data sets is not known in advance. In order to infer the one-to-one correspondence of samples between two views, a novel concept of multi-view matching is proposed. The matching algorithm is completely data-driven and is demonstrated in several applications such as matching of metabolites between humans and mice, and matching of sentences between documents in two languages.
Resumo:
This thesis analyzes how matching takes place at the Finnish labor market from three different angles. The Finnish labor market has undergone severe structural changes following the economic crisis in the early 1990s. The labor market has had problems adjusting from these changes and hence a high and persistent unemployment has followed. In this thesis I analyze if matching problems, and in particular if changes in matching, can explain some of this persistence. The thesis consists of three essays. In the first essay Finnish Evidence of Changes in the Labor Market Matching Process the matching process at the Finnish labor market is analyzed. The key finding is that the matching process has changed thoroughly between the booming 1980s and the post-crisis period. The importance of the number of unemployed, and in particular long-term unemployed, for the matching process has vanished. More unemployed do not increase matching as theory predicts but rather the opposite. In the second essay, The Aggregate Matching Function and Directed Search -Finnish Evidence, stock-flow matching as a potential micro foundation of the aggregate matching function is studied. In the essay I show that newly unemployed match mainly with the stock of vacancies while longer term unemployed match with the inflow of vacancies. When aggregating I still find evidence of the traditional aggregate matching function. This could explain the huge support the aggregate matching function has received despite its odd randomness assumption. The third essay, How do Registered Job Seekers really match? -Finnish occupational level Evidence, studies matching for nine occupational groups and finds that very different matching problems exist for different occupations. In this essay also misspecification stemming from non-corresponding variables is dealt with through the introduction of a completely new set of variables. The new outflow measure used is vacancies filled with registered job seekers and it is matched by the supply side measure registered job seekers.