35 resultados para extrastriate processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on investigations into the influence of heat treatment on the manufacturing of oat flakes. Sources of variation in the oat flake quality are reviewed, including the whole chain from the farm to the consumer. The most important quality parameters of oat flakes are the absence of lipid hydrolysing enzymes, specific weight, thickness, breakage (fines), water absorption. Flavour, colour and pasting properties are also important, but were not included in the experimental part of this study. Of particular interest was the role of heat processing. The first possible heat treatment may occur already during grain drying, which in Finland generally happens at the farm. At the mill, oats are often kilned to stabilise the product by inactivating lipid hydrolysing enzymes. Almost invariably steaming is used during flaking, to soften the groats and reduce flake breakage. This thesis presents the use of a material science approach to investigating a complex system, typical of food processes. A combination of fundamental and empirical rheological measurements was used together with a laboratory scale process to simulate industrial processing. The results were verified by means of industrial trials. Industrially produced flakes at three thickness levels (nominally 0.75, 0.85 and 0.90 mm) were produced from kilned and unkilned oat groats, and the flake strength was measured at different moisture contents. Kilning was not found to significantly affect the force required to puncture a flake with a 2mm cylindrical probe, which was taken as a measure of flake strength. To further investigate how heat processing contributes to flake quality, dynamic mechanical analysis was used to characterise the effect of heat on the mechanical properties of oats. A marked stiffening of the groat, of up to about 50% increase in storage modulus, was observed during first heating at around 36 to 57°C. This was also observed in tablets prepared from ground groats and extracted oat starch. This stiffening was thus attributed to increased adhesion between starch granules. Groats were steamed in a laboratory steamer and were tempered in an oven at 80 110°C for 30 90 min. The maximum force required to compress the steamed groats to 50% strain increased from 50.7 N to 57.5 N as the tempering temperature was increased from 80 to 110°C. Tempering conditions also affected water absorption. A significantly higher moisture content was observed for kilned (18.9%) compared to unkilned (17.1%) groats, but otherwise had no effect on groat height, maximum force or final force after a 5 s relaxation time. Flakes were produced from the tempered groats using a laboratory flaking machine, using a roll gap of 0.4 mm. Apart from specific weight, flake properties were not influenced by kilning. Tempering conditions however had significant effects on the specific weight, thickness and water absorption of the flakes, as well as on the amount of fine material (<2 mm) produced during flaking. Flake strength correlated significantly with groat strength and flake thickness. Trial flaking at a commercial mill confirmed that groat temperature after tempering influenced water absorption. Variation in flake strength was observed , but at the groat temperatures required to inactivate lipase, it was rather small. Cold flaking of groats resulted in soft, floury flakes. The results presented in this thesis suggest that heating increased the adhesion between starch granules. This resulted in an increase in the stiffness and brittleness of the groat. Brittle fracture, rather than plastic flow, during flaking could result in flaws and cracks in the flake. These would be expected to increase water absorption. This was indeed observed as tempering temperature increased. Industrial trials, conducted with different groat temperatures, confirmed the main findings of the laboratory experiments. The approach used in the present study allowed the systematic study of the effect of interacting process parameters on product quality. There have been few scientific studies of oat processing, and these results can be used to understand the complex effects of process variables on flake quality. They also offer an insight into what happens as the oat groat is deformed into a flake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milk microfiltration (0.05-0.2 um) is a membrane separation technique which divides milk components into casein-enriched and native whey fractions. Hitherto the effect of intensive microfiltration including a diafiltration step for both cheese and whey processing has not been studied. The microfiltration performance of skimmed milk was studied with polymeric and ceramic MF membranes. The changes caused by decreased concentration of milk lactose, whey protein and ash content for cheese milk quality and ripening were studied. The effects of cheese milk modification on the milk coagulation properties, cheese recovery yield, cheese composition, ripening and sensory quality as well as on the whey recovery yield and composition by microfiltration were studied. The functional properties of whey protein concentrate from native whey were studied and the detailed composition of whey protein concentrate powders made from cheese wheys after cheese milk pretreatments such as high temperature heat treatment (HH), microfiltration (MF) and ultrafiltration (UF) were compared. The studied polymeric spiral wound microfiltration membranes had 38.5% lower energy consumption, 30.1% higher retention of whey proteins to milk retentate and 81.9% lower permeate flux values compared to ceramic membranes. All studied microfiltration membranes were able to separate main whey proteins from skimmed milk. The optimal lactose content of Emmental cheese milk exceeded 3.2% and reduction of whey proteins and ash content of cheese milk with high concentration factor (CF) values increased the rate of cheese ripening. Reduction of whey protein content in cheese milk increased the concentration of caseinomacropeptide (CMP) of total proteins in cheese whey. Reduction of milk whey protein, lactose and ash content reduces milk rennet clotting time and increased the firmness of the coagulum. Cheese yield calculated from raw milk to cheese was lower with microfiltrated milks due to native whey production. Amounts of a-lactalbumin (a-LA) and b-lactoglobulin (b-LG) were significantly higher in the reference whey, indicating that HH, MF and UF milk pretreatments decrease the amounts of these valuable whey proteins in whey. Even low CF values in milk microfiltration (CF 1.4) reduced nutritional value of cheese whey. From the point of view of utilization of milk components it would be beneficial if the amount of native whey and the CMP content of cheese whey could be maximized. Whey protein concentrate powders made of native whey had excellent functional properties and their detailed amino acid composition differed from those of cheese whey protein concentrate powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The average daily intake of folate, one of the B vitamins, falls below recommendations among the Finnish population. Bread and cereals are the main sources of folate, rye being the most significant single source. Processing is a prerequisite for the consumption of whole grain rye; however, little is known about the effect of processing on folates. Moreover, data on the bioavailability of endogenous cereal folates are scarce. The aim of this study was to examine the variation in as well as the effect of fermentation, germination, and thermal processes on folate contents in rye. Bioavailability of endogenous rye folates was investigated in a four-week human intervention study. One of the objectives throughout the work was to optimise and evaluate analytical methods for determining folate contents in cereals. Affinity chromatographic purification followed by high-performance liquid chromatography (HPLC) was a suitable method for analysing cereal products for folate vitamers, and microbiological assay with Lactobacillus rhamnosus reliably quantified the total folate. However, HPLC gave approximately 30% lower results than the microbiological assay. The folate content of rye was high and could be further increased by targeted processing. The vitamer distribution of whole grain rye was characterised by a large proportion of formylated vitamers followed by 5-methyltetrahydrofolate. In sourdough fermentation of rye, the studied yeasts synthesized and lactic acid bacteria mainly depleted folate. Two endogenous bacteria isolated from rye flour were found to produce folate during fermentation. Inclusion of baker s yeast in sourdough fermentation raised the folate level so that the bread could contain more folate than the flour it was made of. Germination markedly increased the folate content of rye, with particularly high folate concentrations in hypocotylar roots. Thermal treatments caused significant folate losses but the preceding germination compensated well for the losses. In the bioavailability study, moderate amounts of endogenous folates in the form of different rye products and orange juice incorporated in the diet improved the folate status among healthy adults. Endogenous folates from rye and orange juice showed similar bioavailability to folic acid from fortified white bread. In brief, it was shown that the folate content of rye can be enhanced manifold by optimising and combining food processing techniques. This offers some practical means to increase the daily intake of folate in a bioavailable form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication and transcription of the RNA genome of alphaviruses relies on a set of virus-encoded nonstructural proteins. They are synthesized as a long polyprotein precursor, P1234, which is cleaved at three processing sites to yield nonstructural proteins nsP1, nsP2, nsP3 and nsP4. All the four proteins function as constitutive components of the membrane-associated viral replicase. Proteolytic processing of P1234 polyprotein is precisely orchestrated and coordinates the replicase assembly and maturation. The specificity of the replicase is also controlled by proteolytic cleavages. The early replicase is composed of P123 polyprotein intermediate and nsP4. It copies the positive sense RNA genome to complementary minus-strand. Production of new plus-strands requires complete processing of the replicase. The papain-like protease residing in nsP2 is responsible for all three cleavages in P1234. This study addressed the mechanisms of proteolytic processing of the replicase polyprotein in two alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) representing different branches of the genus. The survey highlighted the functional relation of the alphavirus nsP2 protease to the papain-like enzymes. A new structural motif the Cys-His catalytic dyad accompanied with an aromatic residue following the catalytic His was described for nsP2 and a subset of other thiol proteases. Such an architecture of the catalytic center was named the glycine specificity motif since it was implicated in recognition of a specific Gly residue in the substrate. In particular, the presence of the motif in nsP2 makes the appearance of this amino acid at the second position upstream of the scissile bond a necessary condition for the cleavage. On top of that, there were four distinct mechanisms identified, which provide affinity for the protease and specifically direct the enzyme to different sites in the P1234 polyprotein. Three factors RNA, the central domain of nsP3 and the N-terminus of nsP2 were demonstrated to be external modulators of the nsP2 protease. Here I suggest that the basal nsP2 protease specificity is inherited from the ancestral papain-like enzyme and employs the recognition of the upstream amino acid signature in the immediate vicinity of the scissile bond. This mechanism is responsible for the efficient processing of the SFV nsP3/nsP4 junction. I propose that the same mechanism is involved in the cleavage of the nsP1/nsP2 junction of both viruses as well. However, in this case it rather serves to position the substrate, whereas the efficiency of the processing is ensured by the capability of nsP2 to cut its own N-terminus in cis. Both types of cleavages are demonstrated here to be inhibited by RNA, which is interpreted as impairing the basal papain-like recognition of the substrate. In contrast, processing of the SIN nsP3/nsP4 junction was found to be activated by RNA and additionally potentiated by the presence of the central region of nsP3 in the protease. The processing of the nsP2/nsP3 junction in both viruses occurred via another mechanism, requiring the exactly processed N-terminus of nsP2 in the protease and insensitive to RNA addition. Therefore, the three processing events in the replicase polyprotein maturation are performed via three distinct mechanisms in each of two studied alphaviruses. Distinct sets of conditions required for each cleavage ensure sequential maturation of P1234 polyprotein: nsP4 is released first, then the nsP1/nsP2 site is cut in cis, and liberation of the nsP2 N-terminus activates the cleavage of the nsP2/nsP3 junction at last. The first processing event occurs differently in SFV and SIN, whereas the subsequent cleavages are found to be similar in the two viruses and therefore, their mechanisms are suggested to be conserved in the genus. The RNA modulation of the alphavirus nonstructural protease activity, discovered here, implies bidirectional functional interplay between the alphavirus RNA metabolism and protease regulation. The nsP2 protease emerges as a signal transmitting moiety, which senses the replication stage and responds with proteolytic cleavages. A detailed hypothetical model of the alphavirus replicase core was inferred from the data obtained in the study. Similar principles in replicase organization and protease functioning are expected to be employed by other RNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.