18 resultados para clouds
Resumo:
Dhondup Gyal (Don grub rgyal, 1953 - 1985) was a Tibetan writer from Amdo (Qinghai, People's Republic of China). He wrote several prose works, poems, scholarly writings and other works which have been later on collected together into The Collected Works of Dhondup Gyal, in six volumes. He had a remarkable influence on the development of modern Tibetan literature in the 1980s. Examining his works, which are characterized by rich imagery, it is possible to notice a transition from traditional to modern ways of literary expression. Imagery is found in both the poems and prose works of Dhondup Gyal. Nature imagery is especially prominent and his writings contain images of flowers and plants, animals, water, wind and clouds, the heavenly bodies and other environmental elements. Also there are images of parts of the body and material and cultural images. To analyse the images, most of which are metaphors and similes, the use of the cognitive theory of metaphor provides a good framework for making comparisons with images in traditional Tibetan literature and also some images in Chinese, Indian and Western literary works. The analysis shows that the images have both traditional and innovative features. The source domains of images often appear similar to those found in traditional Tibetan literature and are slow to change. However, innovative shifts occur in the way they are mapped on their target domains, which may express new meanings and are usually secular in nature if compared to the religiosity which often characterizes traditional Tibetan literature. Dhondup Gyal's poems are written in a variety of styles, ranging from traditional types of verse compositions and poems in the ornate kāvya-style to modern free verse poetry. The powerful central images of his free verse poems and some other works can be viewed as structurally innovative and have been analysed with the help of the theory of conceptual blending. They are often ambiguous in their meaning, but can be interpreted to express ideas related to creativity, freedom and the need for change and development.
Resumo:
In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.
Resumo:
Road transport and infrastructure has a fundamental meaning for the developing world. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic and social development in the developing countries. This thesis focuses on studying the present state of road infrastructure and its mapping in the Taita Hills, south-east Kenya. The study is included as a part of the TAITA-project by the Department of Geography, University of Helsinki. The road infrastructure of the study area is studied by remote sensing and GIS based methodology. As the principal dataset, true colour airborne digital camera data from 2004, was used to generate an aerial image mosaic of the study area. Auxiliary data includes SPOT satellite imagery from 2003, field spectrometry data of road surfaces and relevant literature. Road infrastructure characteristics are interpreted from three test sites using pixel-based supervised classification, object-oriented supervised classifications and visual interpretation. Road infrastructure of the test sites is interpreted visually from a SPOT image. Road centrelines are then extracted from the object-oriented classification results with an automatic vectorisation process. The road infrastructure of the entire image mosaic is mapped by applying the most appropriate assessed data and techniques. The spectral characteristics and reflectance of various road surfaces are considered with the acquired field spectra and relevant literature. The results are compared with the experimented road mapping methods. This study concludes that classification and extraction of roads remains a difficult task, and that the accuracy of the results is inadequate regardless of the high spatial resolution of the image mosaic used in this thesis. Visual interpretation, out of all the experimented methods in this thesis is the most straightforward, accurate and valid technique for road mapping. Certain road surfaces have similar spectral characteristics and reflectance values with other land cover and land use. This has a great influence for digital analysis techniques in particular. Road mapping is made even more complicated by rich vegetation and tree canopy, clouds, shadows, low contrast between roads and surroundings and the width of narrow roads in relation to the spatial resolution of the imagery used. The results of this thesis may be applied to road infrastructure mapping in developing countries on a more general context, although with certain limits. In particular, unclassified rural roads require updated road mapping schemas to intensify road transport possibilities and to assist in the development of the developing world.