46 resultados para Temporomandibular joint disorders
Resumo:
Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.
Resumo:
Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).
Resumo:
High quality of platelet analytics requires specialized knowledge and skills. It was applied to analyze platelet activation and aggregation responses in a prospective controlled study of patients with Finnish type of amyloidosis. The 20 patients with AGel amyloidosis displayed a delayed and more profound platelet shape change than healthy siblings and healthy volunteers, which may be related to altered fragmentation of mutated gelsolin during platelet activation. Alterations in platelet shape change have not been reported in association with platelet disorders. In the rare Bernard-Soulier syndrome with Asn45Ser mutation of glycoprotein (GP) IX, the diagnostic defect in the expression of GPIb-IX-V complex was characterized in seven Finnish patients, also an internationally exceptionally large patient series. When measuring thrombopoietin in serial samples of amniotic fluid and cord blood of 15 pregnant women with confirmed or suspected fetal alloimmune thrombocytopenia, the lower limit of detection could be extended. The results approved that thrombopoietin is present already in amniotic fluid. The application of various non-invasive means for diagnosing thrombocytopenia (TP) revealed that techniques for estimating the proportion of young, i.e. large platelets, such as direct measurement of reticulated platelets and the mean platelet size, would be useful for evaluating platelet kinetics in a given patient. Due to different kinetics between thrombopoietin and increase of young platelets in circulation, these measurements may have most predictive value when measured from simultaneous samples. Platelet autoantibodies were present not only in isolated autoimmune TP but also in patients without TP where disappearance of platelets might be compensated by increased production. The autoantibodies may also persist after TP has been cured. Simultaneous demonstration of increased young platelets (or increased mean platelet volume) in peripheral blood and the presence of platelet associated IgG specificities to major glycoproteins (GPIb-IX and GPIIb-IIIa) may be considered diagnostic for autoimmune TP. Measurement of a soluble marker as a sign of thrombin activation and proceeding deterioration of platelet components was applied to analyze the alterations under several stress factors (storage, transportation and lack of continuous shaking under controlled conditions) of platelet products. The GPV measured as a soluble factor in platelet storage medium showed good correlation with an array of other measurements commonly applied in characterization of stored platelets. The benefits of measuring soluble analyte in a quantitative assay were evident.
Resumo:
The prevalence and assessment of neuroleptic-induced movement disorders (NIMDs) in a naturalistic schizophrenia population that uses conventional neuroleptics were studied. We recruited 99 chronic schizophrenic institutionalized adult patients from a state nursing home in central Estonia. The total prevalence of NIMDs according to the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) was 61.6%, and 22.2% had more than one NIMD. We explored the reliability and validity of different instruments for measuring these disorders. First, we compared DSM-IV with the established observer rating scales of Barnes Akathisia Rating Scale (BARS), Simpson-Angus Scale (SAS) (for neuroleptic-induced parkinsonism, NIP) and Abnormal Involuntary Movement Scale (AIMS) (for tardive dyskinesia), all three of which have been used for diagnosing NIMD. We found a good overlap of cases for neuroleptic-induced akathisia (NIA) and tardive dyskinesia (TD) but somewhat poorer overlap for NIP, for which we suggest raising the commonly used threshold value of 0.3 to 0.65. Second, we compared the established observer rating scales with an objective motor measurement, namely controlled rest lower limb activity measured by actometry. Actometry supported the validity of BARS and SAS, but it could not be used alone in this naturalistic population with several co-existing NIMDs. It could not differentiate the disorders from each other. Quantitative actometry may be useful in measuring changes in NIA and NIP severity, in situations where the diagnosis has been made using another method. Third, after the relative failure of quantitative actometry to show diagnostic power in a naturalistic population, we explored descriptive ways of analysing actometric data, and demonstrated diagnostic power pooled NIA and pseudoakathisia (PsA) in our population. A subjective question concerning movement problems was able to discriminate NIA patients from all other subjects. Answers to this question were not selective for other NIMDs. Chronic schizophrenia populations are common worldwide, NIMD affected two-thirds of our study population. Prevention, diagnosis and treatment of NIMDs warrant more attention, especially in countries where typical antipsychotics are frequently used. Our study supported the validity and reliability of DSM-IV diagnostic criteria for NIMD in comparison with established rating scales and actometry. SAS can be used with minor modifications for screening purposes. Controlled rest lower limb actometry was not diagnostically specific in our naturalistic population with several co-morbid NIMDs, but it may be sensitive in measuring changes in NIMDs.
Resumo:
Childhood-onset mitochondrial diseases comprise a heterogeneous group of disorders, which may manifest with almost any symptom and affect any tissue or organ. Due to challenging diagnostics, most children still lack a specific aetiological diagnosis. The aim of this thesis was to find molecular causes for childhood-onset mitochondrial disorders in Finland. We identified the underlying cause for 25 children, and found three new diseases, which had not been diagnosed in Finland before. These diseases caused severe progressive infantile-onset encephalomyopathies, and were due to defects in mitochondrial DNA (mtDNA) maintenance. Furthermore, the thesis provides the molecular background of Finnish patients with ‘leukoencephalopathy with brain stem and spinal cord involvement and elevated brain lactate’ (LBSL). A new phenotype was identified to be due to mutations in Twinkle, resembling ‘infantile onset spinocerebellar ataxia’ (IOSCA). These mutations caused mtDNA depletion in the liver, thus confirming the essential role of Twinkle in mtDNA maintenance, and expanding the molecular background of mtDNA depletion syndromes. The major aetiology for infantile mitochondrial myopathy in Finland was discovered to be due to mutations in thymidine kinase 2 (TK2). A novel mutation with Finnish ancestry was identified, and a genotype-phenotype correlation with mutation-specific distribution of tissue involvement was found, thus proving that deficient TK2 may cause multi-tissue depletion and impair neuronal function. This work established the molecular diagnosis and advanced the knowledge of phenotypes among paediatric patients with polymerase gamma (POLG) mutations. The patients showed severe early-onset encephalopathy with intractable epilepsy. POLG mutations are not a prevalent cause of children’s ataxias, although ataxia is a major presenting symptom among adults. Our findings indicate that POLG mutations should be investigated even if typical MRI, histochemical or biochemical abnormalities are lacking. LBSL patients showed considerable variation in phenotype despite identical mutations. A common, most likely European, ancestry, and a relative high carrier frequency of these mutations in Finland were discovered; suggesting that LBSL may be a quite common leukoencephalopathy in other populations as well. The results suggest that MRI findings are so unique that the diagnosis of LBSL is possible to make without genetic studies. This thesis work has resulted in identification of new mitochondrial disorders in Finland, enhancing the understanding of the clinical variability and the importance of tissue-specificity of these disorders. In addition to providing specific diagnosis to the patients, these findings give light to the underlying pathogenetic mechanisms of childhood-onset mitochondrial disorders.
Resumo:
The need for special education (SE) is increasing. The majority of those whose problems are due to neurodevelopmental disorders have no specific aetiology. The aim of this study was to evaluate the contribution of prenatal and perinatal factors and factors associated with growth and development to later need for full-time SE and to assess joint structural and volumetric brain alterations among subjects with unexplained, familial need for SE. A random sample of 900 subjects in full-time SE allocated into three levels of neurodevelopmental problems and 301 controls in mainstream education (ME) provided data on socioeconomic factors, pregnancy, delivery, growth, and development. Of those, 119 subjects belonging to a sibling-pair in full-time SE with unexplained aetiology and 43 controls in ME underwent brain magnetic resonance imaging (MRI). Analyses of structural brain alterations and midsagittal area and diameter measurements were made. Voxel-based morphometry (VBM) analysis provided detailed information on regional grey matter, white matter, and cerebrospinal fluid (CSF) volume differences. Father’s age ≥ 40 years, low birth weight, male sex, and lower socio-economic status all increased the probability of SE placement. At age 1 year, one standard deviation score decrease in height raised the probability of SE placement by 40% and in head circumference by 28%. At infancy, the gross motor milestones differentiated the children. From age 18 months, the fine motor milestones and those related to speech and social skills became more important. Brain MRI revealed no specific aetiology for subjects in SE. However, they had more often ≥ 3 abnormal findings in MRIs (thin corpus callosum and enlarged cerebral and cerebellar CSF spaces). In VBM, subjects in full-time SE had smaller global white matter, CSF, and total brain volumes than controls. Compared with controls, subjects with intellectual disabilities had regional volume alterations (greater grey matter volumes in the anterior cingulate cortex bilaterally, smaller grey matter volume in left thalamus and left cerebellar hemisphere, greater white matter volume in the left fronto-parietal region, and smaller white matter volumes bilaterally in the posterior limbs of the internal capsules). In conclusion, the epidemiological studies emphasized several factors that increased the probability of SE placement, useful as a framework for interventional studies. The global and regional brain MRI findings provide an interesting basis for future investigations of learning-related brain structures in young subjects with cognitive impairments or intellectual disabilities of unexplained, familial aetiology.
Resumo:
This study is part of an ongoing collaborative bipolar research project, the Jorvi Bipolar Study (JoBS). The JoBS is run by the Department of Mental Health and Alcohol Research of the National Public Health Institute, Helsinki, and the Department of Psychiatry, Jorvi Hospital, Helsinki University Central Hospital (HUCH), Espoo, Finland. It is a prospective, naturalistic cohort study of secondary level care psychiatric in- and outpatients with a new episode of bipolar disorder (BD). The second report also included 269 major depressive disorder (MDD) patients from the Vantaa Depression Study (VDS). The VDS was carried out in collaboration with the Department of Psychiatry of the Peijas Medical Care District. Using the Mood Disorder Questionnaire (MDQ), all in- and outpatients at the Department of Psychiatry at Jorvi Hospital who currently had a possible new phase of DSM-IV BD were sought. Altogether, 1630 psychiatric patients were screened, and 490 were interviewed using a semistructured interview (SCID-I/P). The patients included in the cohort (n=191) had at intake a current phase of BD. The patients were evaluated at intake and at 6- and 18-month interviews. Based on this study, BD is poorly recognized even in psychiatric settings. Of the BD patients with acute worsening of illness, 39% had never been correctly diagnosed. The classic presentations of BD with hospitalizations, manic episodes, and psychotic symptoms lead clinicians to correct diagnosis of BD I in psychiatric care. Time of follow-up elapsed in psychiatric care, but none of the clinical features, seemed to explain correct diagnosis of BD II, suggesting reliance on cross- sectional presentation of illness. Even though BD II was clearly less often correctly diagnosed than BD I, few other differences between the two types of BD were detected. BD I and II patients appeared to differ little in terms of clinical picture or comorbidity, and the prevalence of psychiatric comorbidity was strongly related to the current illness phase in both types. At the same time, the difference in outcome was clear. BD II patients spent about 40% more time depressed than BD I patients. Patterns of psychiatric comorbidity of BD and MDD differed somewhat qualitatively. Overall, MDD patients were likely to have more anxiety disorders and cluster A personality disorders, and bipolar patients to have more cluster B personality disorders. The adverse consequences of missing or delayed diagnosis are potentially serious. Thus, these findings strongly support the value of screening for BD in psychiatric settings, especially among the major depressive patients. Nevertheless, the diagnosis must be based on a clinical interview and follow-up of mood. Comorbidity, present in 59% of bipolar patients in a current phase, needs concomitant evaluation, follow-up, and treatment. To improve outcome in BD, treatment of bipolar depression is a major challenge for clinicians.