16 resultados para Substance Abuse and Addiction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.