22 resultados para Silicone membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was twofold- Firstly, to determine the composition of the type IV collagen which are the major components of the basement membrane (BM), in the synovial lining of the rheumatoid arthritis (RA) patient and in the BM in the labial salivary gland of the Sjögrens syndrome (SS) patient. Secondly, this thesis aimed to investigate the role of the BM component laminin α4 and laminin α5 in the migration of neutrophils from the blood vessels thorough the synovial lining layer into synovial fluid and the presence of vWF in the microvasculature of labial salivary gland in SS. Our studies showed that certain α chains type IV collagen are low in RA compared to control synovial linings, while laminin α5 exhibited a pattern of low expression regions at the synovial lining interface towards the joint cavity and fluid. Also, high numbers of macrophage-like lining cells containing MMP-9 were found in the lining. MMP-9 was also found in the synovial fluid. Collagen α1/2 (IV) mRNA was found to be present in high amount compared to the other α(IV) chains and also showed intense labelling in immunohistochemical staining in normal and SS patients. In healthy glands α5(IV) and α6(IV) chains were found to be continuous around ducts but discontinuous around acini. The α5(IV) and α6(IV) mRNAs were present in LSG explants and HSG cell line, while in SS these chains seemed to be absent or appear only in patches around the ductal BM and tended to be absent around acini in immunohistochemical staining, indicating that their synthesis and/or degradation seemed to be locally regulated around acinar cells. The provisional matrix component vWF serves as a marker of vascular damage. Microvasculature in SS showed signs of focal damage which in turn might impair arteriolar feeding, capillary transudation and venular drainage of blood. However, capillary density was not decreased but rather increased, perhaps as a result of angiogenesis compensatory to microvascular damage. Microvascular involvement of LSG may contribute to the pathogenesis of this syndrome. This twofold approach allows us to understand the intricate relation between the ECM components and the immunopathological changes that occur during the pathogenesis of these inflammatory rheumatic disease processes. Also notably this study highlights the importance of maintaining a healthy ECM to prevent the progression or possibly allow reversal of the disease to a considerable level. Furthermore, it can be speculated that a healthy BM could quarantine the inflamed region or in case of cancer cells barricade the movement of malignant cells thereby preventing further spread to the surrounding areas. This understanding can be further applied to design appropriate drugs which act specifically to maintain a proper BM/BM like intercellular matrix composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sec1/Munc18 (SM) protein family members are evolutionary conserved proteins. They perform an essential, albeit poorly understood function in SNARE complex formation in membrane fusion. In addition to the SNARE complex components, only a few SM protein binding proteins are known. Typically, their binding modes to SM proteins and their contribution to the membrane fusion regulation is poorly characterised. We identified Mso1p as a novel Sec1p interacting partner. It was shown that Mso1p and Sec1p interact at sites of polarised secretion and that this localisation is dependent on the Rab GTPase Sec4p and its GEF Sec2p. Using targeted mutagenesis and N- and C-terminal deletants, it was discovered that the interaction between an N-terminal peptide of Mso1p and the putative Syntaxin N-peptide binding area in Sec1p domain 1 is important for membrane fusion regulation. The yeast Syntaxin homologues Sso1p and Sso2p lack the N-terminal peptide. Our results show that in addition to binding to the putative N-peptide binding area in Sec1p, Mso1p can interact with Sso1p and Sso2p. This result suggests that Mso1p can mimic the N-peptide binding to facilitate membrane fusion. In addition to Mso1p, a novel role in membrane fusion regulation was revealed for the Sec1p C-terminal tail, which is missing in its mammalian homologues. Deletion of the Sec1p-tail results in temperature sensitive growth and reduced sporulation. Using in vivo and in vitro experiments, it was shown that the Sec1p-tail mediates SNARE complex binding and assembly. These results propose a regulatory role for the Sec1p-tail in SNARE complex formation. Furthermore, two novel interaction partners for Mso1p, the Rab GTPase Sec4p and plasma membrane phospholipids, were identified. The Sec4p link was identified using Bimolecular Fluorescence Complementation assays with Mso1p and the non-SNARE binding Sec1p(1-657). The assay revealed that Mso1p can target Sec1p(1-657) to sites of secretion. This effect is mediated via the Mso1p C-terminus, which previously has been genetically linked to Sec4p. These results and in vitro binding experiments suggest that Mso1p acts in cooperation with the GTP-bound form of Sec4p on vesicle-like structures prior to membrane fusion. Mso1p shares homology with the PIP2 binding domain of the mammalian Munc18 binding Mint proteins. It was shown both in vivo and in vitro that Mso1p is a phospholipid inserting protein and that this insertion is mediated by the conserved Mso1p amino terminus. In vivo, the Mso1p phospholipid binding is needed for sporulation and Mso1p-Sec1p localisation at the sites of secretion at the plasma membrane. The results reveal a novel layer of membrane fusion regulation in exocytosis and propose a coordinating role for Mso1p in connection with membrane lipids, Sec1p, Sec4p and SNARE complexes in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hodgkin and Huxley (HH) model of action potential has become a central paradigm of neuroscience. Despite its ability to predict action potentials with remarkable accuracy, it fails to explain several biophysical findings related to the initiation and propagation of the nerve impulse. The isentropic heat release and optical phenomena demonstrated by various experiments suggest that action potential is accompanied by a transient phase change in the axonal membrane. In this study a method was developed for preparing a giant axon from the crayfish abdominal cord for studying the molecular mechanisms of action potential simultaneously by electrophysiological and optical methods. Also an alternative setup using a single-cell culture of an Aplysia sensory neuron is presented. In addition to the description of the method, the preliminary results on the effect of phloretin, a dipole potential lowering compound, on the excitability of a crayfish giant axon are presented.