36 resultados para SELECTIVE SYNTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ionic liquids in chemical research has gained considerable interest and activity in recent years. Due to their unique and varied physicochemical properties, in comparison to molecular solvents, the potential applications for ionic liquids are enormous. The use of microwave irradiation, as a powerful dielectric heating technique, in synthetic organic chemistry has been known since 1986. Since then, it has gained significant recognition for its research and application in both academia and industry. The use of either ionic liquids or microwave irradiation in synthetic organic chemistry has been known to afford improved, alternative or complimentary selectivities, in comparison to traditional processes. In this study, the use of ionic liquids as solvents, co-solvents and catalytic media was explored in Friedel-Crafts, deuterolabelling and O-demethylation reactions. Alternative methods for the production of a variety of aromatic ketones using the Friedel-Crafts acylation methodology were investigated using ionic liquid catalyst or ionic liquid acidic additive systems. The disclosed methods, i.e. metal bistriflamides and chloroindate ionic liquids systems, possessed good catalytic activity in the synthesis of typical benzophenones. These catalytic systems were also recyclable. Microwave irradiation was found to be useful in the synthesis of various polyhydroxydeoxybenzoins and arylpropanones as synthetic precursors to naturally occurring or potentially bioactive compounds. Under optimized condition, the reaction occurred in only four minutes using systems such as [bmim][NTf2]/HNTf2 and [bmim][BF4]/BF3·OEt2. Naturally occurring polyphenols, such as isoflavones, can possess various types of biological or pharmacological activity. In particular, some are noted for their beneficial effects on human health. Isotopically labelled analogues of polyphenols are valuable as analytical standards in the quantification of these compounds from biological matrices. A new strategy for deuterolabelling of polyphenols was developed using ionic liquids as co-solvents and 35% DCl/D2O, as a cheap deuterium source, under microwave irradiation. Under these conditions, perdeuterated compounds were achieved in short reaction times, in high isotopic purity and in excellent yields. An O-demethylation reaction was developed, using an ionic liquid reaction medium with BBr3 for the deprotection of a variety methyl protected polyphenolic compounds, such as isoflavons and lignans. This deprotection procedure was found to be very practical as the reaction occurred under mild reaction conditions and in short reaction times. The isolation and purification steps were particularly straightforward and high yielding, in comparison to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GDP-L-fucose: synthesis and role in inflammation The migration of leukocytes from intravascular locations to extravascular sites is essential to the immune responses. The initial attachment of leukocytes to the endothelium and the rolling step of the leukocyte extravasation cascade are mediated by selectins, a family of cell adhesion molecules on cell surfaces. Selectins are able to recognize glycoproteins and glycolipids containing the tetrasaccharide sialyl Lewis x (sLex, Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc). Several glycosyltransferases are involved in the biosynthesis of sLex, fucosyltransferase VII (Fuc-TVII) being the last enzyme to modify the sLex structure. Fuc-TVII transfers L-fucose from GDP-L-fucose to sialylated N-acetyllactosamine. GDP-L-fucose is synthesized in the cytosol via two different metabolic pathways. The major, constitutively active de novo pathway involves conversion of GDP-α-D-mannose to GDP-β-L-fucose. In the alternative salvage pathway, L-fucokinase synthesizes from free fucose L-fucose-1-phosphate, which is further converted to GDP-L-fucose by GDP-L-fucose pyrophosphorylase. GDP-L-fucose is translocated from the cytosol to Golgi for fucosylation via the GDP-fucose transporter. This thesis involved the study of the synthesis of GDP-L-fucose via the salvage pathway: cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. The gene expression levels of these enzymes were found to be relatively high in various tissues; the mRNA levels were highest in brain, ovary and testis. This study also describes molecular cloning of rat fucosyltransferase VII (FUT7) and its expression as a functional enzyme. Gene expression levels of GDP-L-fucose synthesizing enzymes, GDP-fucose transporter and FUT7 were determined in inflamed tissues as well as cancer cells. Our results revealed a clear upregulation of the enzymes involved in the synthesis of GDP-L-fucose via de novo pathway, GDP-fucose transporter and FUT7 in inflamed tissues and in cancer cells. On the contrary, the GDP-L-fucose salvage pathway was found to be irrelevant in inflammation and in tumorigenesis. Furthermore, our results indicated the transcriptional coregulation of Golgi transporters involved in the synthesis of sulfo sLex, i.e. CMP-sialic acid, GDP-fucose and 3 phosphoadenosine 5 -phosphosulfate transporters, in inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For most RNA viruses RNA-dependent RNA polymerases (RdRPs) encoded by the virus are responsible for the entire RNA metabolism. Thus, RdRPs are critical components in the viral life cycle. However, it is not fully understood how these important enzymes function during viral replication. Double-stranded RNA (dsRNA) viruses perform the synthesis of their RNA genome within a proteinacous viral particle containing an RdRP as a minor constituent. The phi6 bacteriophage is the best-studied dsRNA virus, providing an excellent background for studies of its RNA synthesis. The purified recombinant phi6 RdRP is highly active in vitro and it possesses both RNA replication and transcription activities. The crystal structure of the phi6 polymerase, solved in complex with a number of ligands, provides a working model for detailed in vitro studies of RNA-dependent RNA polymerization. In this thesis, the primer-independent initiation of the phi6 RdRP was studied in vitro using biochemical and structural methods. A C-terminal, four-amino-acid-long loop protruding into the central cavity of the phi6 RdRP has been suggested to stabilize the incoming nucleotides of the initiation complex formation through stacking interactions. A similar structural element has been found from several other viral RdRPs. In this thesis, this so-called initiation platform loop was subjected to site-directed mutagenesis to address its role in the initiation. It was found that the initiation mode of the mutants is primer-dependent, requiring either an oligonucleotide primer or a back-priming initiation mechanism for the RNA synthesis. The crystal structure of a mutant RdRP with altered initiation platform revealed a set of contacts important for primer-independent initiation. Since phi6 RdRP is structurally and functionally homologous to several viral RdRPs, among them the hepatitis C virus RdRP, these results provide further general insight to understand primer-independent initiation. In this study it is demonstrated that manganese phasing could be used as a practical tool for solving structures of large proteins with a bound manganese ion. The phi6 RdRP was used as a case study to obtain phases for crystallographic analysis. Manganese ions are naturally bound to the phi6 RdRP at the palm domain of the enzyme. In a crystallographic experiment, X-ray diffraction data from a phi6 RdRP crystal were collected at a wavelength of 1.89 Å, which is the K edge of manganese. With this data an automatically built model of the core region of the protein could be obtained. Finally, in this work terminal nucleotidyl transferase (TNTase) activity of the phi6 RdRP was documented in the isolated polymerase as well as in the viral particle. This is the first time that such an activity has been reported in a polymerase of a dsRNA virus. The phi6 RdRP used uridine triphosphates as the sole substrate in a TNTase reaction but could accept several heterologous templates. The RdRP was able to add one or a few non-templated nucleotides to the 3' end of the single- or double-stranded RNA substrate. Based on the results on particle-mediated TNTase activity and previous structural information of the polymerase, a model for termination of the RNA-dependent RNA synthesis is suggested in this thesis.