17 resultados para REACTOR SAFETY
Resumo:
Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.
Resumo:
According to the literature and statistical figures, professional drivers constitute a high-risk group in traffic and should be investigated in connection with the factors related to safe driving. However, safety-related behaviours and outcomes among professional drivers have attracted very little attention from safety researchers. In addition, comparing different professional and non-professional driver groups in terms of critical on-the-road characteristics and outcomes has been indicated in the literature as being necessary for a more comprehensive understanding of driver groups and the nature of driving itself. The aim of the present study was to investigate professional driving from a safety climate stand point in relation to predominant driving-related factors and by considering the differences between driver groups. Hence, four Sub-studies were conducted according to a framework emphasizing the relationships between safety climate, driver groups, driver stress, human factors (i.e., driver behaviour and performance) and accidents. Demographic information, as well as data for driver behaviour, performance, and driver stress was collected by questionnaire. The data was analysed using factor analysis, analysis of covariance as well as hierarchical and logistic regression analysis. The results revealed multi-dimensional factor structures for the safety climate measures. Considering the relationships between variables, differences were evidenced regarding on-the-road stress reactions, risky driver behaviours and penalties, between the various professional and non-professional driver groups. Driver stress was found to be related to accidents. The results also indicated that the safety climate has positive relationships with both driver behaviour and performance, and as well as involvement in accidents. The present study has a number of critical implications resulting from the fact that the way in which the effects of safety climate on professional driving were investigated, as well as the differences between professional and non-professional driver groups, was unique. Additionally, for the first time, a safety climate scale was developed specifically for professional drivers. According to the results of the study and to previous literature, a tentative model was proposed representing a possible route for the relationships between safety climate, human factors, driver stress, driver groups and accidents, by emphasizing the effects of safety climate.