27 resultados para Proteolytic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines protein behaviours that occur during cereal fermentations. The focus is on the prolamin degradation in sourdoughs. The thesis also looks at what happens to the oat globulins during an oat bran acidification process. The cereal prolamins are unique proteins in many respects. The wheat prolamins (glutenins and gliadins) are responsible for the formation of the gluten that provides the viscoelastic properties to wheat doughs whereas the rye prolamins (secalins) are unable to develop gluten-like structures. In addition, many baking technological features, such as flavour, shelf-life and dough properties are affected by the protein degradation that might occur during processing. On the other hand, the prolamins contain protein structures that are harmful to gluten sensitive people. It is thus evident that the degradation of the prolamins in sourdough processes may be approached from various aspects. This thesis describes some of these approaches. Four different cereal fermentations were carried out. Wheat sourdough (WSD) and rye sourdough (RSD) fermentations represented traditional sourdoughs. A germinated-wheat sourdough (GWSD) was a novel sourdough type that was prepared using germinated wheat grains that had high and diverse proteolytic activities. The oat bran fermentation (OBF) represented a fermentation system that lacked functional cereal proteases. The high molecular weight glutenins and rye secalins were degraded during the WSD and RSD fermentations, respectively. It was noteworthy that in WSD only a very limited degradation of the gliadins occurred. The gliadins were, however, hydrolysed very extensively during the GWSD fermentation. No protein degradation was observable in the OBF system. Instead the acidification altered the solubility of the oat globulins and this finally led to their aggregation. This thesis confirms that the endogenous proteases of cereals hydrolyse cereal prolamins in sourdoughs. The thesis also shows that the proteolytic activity of the used cereal raw material determines the extent of proteolysis that occurs in sourdough. This means that bakers may adjust the protein degradation in their sourdoughs by selecting the raw material based on its proteolytic activity. The thesis also demonstrates that by using germinated grains, with high and diverse proteolytic activity in sourdough preparations, the prolamins can be extensively degraded. Whether such highly proteolytic food technology could be used to manufacture new gluten-free cereal-based products for gluten sensitive people remains to be solved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replication and transcription of the RNA genome of alphaviruses relies on a set of virus-encoded nonstructural proteins. They are synthesized as a long polyprotein precursor, P1234, which is cleaved at three processing sites to yield nonstructural proteins nsP1, nsP2, nsP3 and nsP4. All the four proteins function as constitutive components of the membrane-associated viral replicase. Proteolytic processing of P1234 polyprotein is precisely orchestrated and coordinates the replicase assembly and maturation. The specificity of the replicase is also controlled by proteolytic cleavages. The early replicase is composed of P123 polyprotein intermediate and nsP4. It copies the positive sense RNA genome to complementary minus-strand. Production of new plus-strands requires complete processing of the replicase. The papain-like protease residing in nsP2 is responsible for all three cleavages in P1234. This study addressed the mechanisms of proteolytic processing of the replicase polyprotein in two alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) representing different branches of the genus. The survey highlighted the functional relation of the alphavirus nsP2 protease to the papain-like enzymes. A new structural motif the Cys-His catalytic dyad accompanied with an aromatic residue following the catalytic His was described for nsP2 and a subset of other thiol proteases. Such an architecture of the catalytic center was named the glycine specificity motif since it was implicated in recognition of a specific Gly residue in the substrate. In particular, the presence of the motif in nsP2 makes the appearance of this amino acid at the second position upstream of the scissile bond a necessary condition for the cleavage. On top of that, there were four distinct mechanisms identified, which provide affinity for the protease and specifically direct the enzyme to different sites in the P1234 polyprotein. Three factors RNA, the central domain of nsP3 and the N-terminus of nsP2 were demonstrated to be external modulators of the nsP2 protease. Here I suggest that the basal nsP2 protease specificity is inherited from the ancestral papain-like enzyme and employs the recognition of the upstream amino acid signature in the immediate vicinity of the scissile bond. This mechanism is responsible for the efficient processing of the SFV nsP3/nsP4 junction. I propose that the same mechanism is involved in the cleavage of the nsP1/nsP2 junction of both viruses as well. However, in this case it rather serves to position the substrate, whereas the efficiency of the processing is ensured by the capability of nsP2 to cut its own N-terminus in cis. Both types of cleavages are demonstrated here to be inhibited by RNA, which is interpreted as impairing the basal papain-like recognition of the substrate. In contrast, processing of the SIN nsP3/nsP4 junction was found to be activated by RNA and additionally potentiated by the presence of the central region of nsP3 in the protease. The processing of the nsP2/nsP3 junction in both viruses occurred via another mechanism, requiring the exactly processed N-terminus of nsP2 in the protease and insensitive to RNA addition. Therefore, the three processing events in the replicase polyprotein maturation are performed via three distinct mechanisms in each of two studied alphaviruses. Distinct sets of conditions required for each cleavage ensure sequential maturation of P1234 polyprotein: nsP4 is released first, then the nsP1/nsP2 site is cut in cis, and liberation of the nsP2 N-terminus activates the cleavage of the nsP2/nsP3 junction at last. The first processing event occurs differently in SFV and SIN, whereas the subsequent cleavages are found to be similar in the two viruses and therefore, their mechanisms are suggested to be conserved in the genus. The RNA modulation of the alphavirus nonstructural protease activity, discovered here, implies bidirectional functional interplay between the alphavirus RNA metabolism and protease regulation. The nsP2 protease emerges as a signal transmitting moiety, which senses the replication stage and responds with proteolytic cleavages. A detailed hypothetical model of the alphavirus replicase core was inferred from the data obtained in the study. Similar principles in replicase organization and protease functioning are expected to be employed by other RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of non-melanoma skin cancer is increasing worldwide. Basal cell carcinoma followed by squamous cell carcinoma and malignant melanoma are the most frequent skin tumors. Immunosuppressed patients have an increased risk of neoplasia, of which non-melanoma skin cancer is the most common. Matrix metalloproteinases (MMPs) are proteolytic enzymes that collectively are capable of degrading virtually all components of the extracellular matrix. MMPs can also process substrates distinct from extracellular matrix proteins and influence cell proliferation, differentiation, angiogenesis, and apoptosis. MMP activity is regulated by their natural inhibitors, tissue inhibitors of metallopro-teinases (TIMPs). In this study, the expression patterns of MMPs, TIMPs, and certain cancer-related molecules were investigated in premalignant and malignant lesions of the human skin. As methods were used immunohistochemisty, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR) from the cell cultures. Our aim was to evaluate the expression pattern of MMPs in extramammary Paget's disease in order to find markers for more advanced tumors, as well as to shed light on the origin of this rare neoplasm. Novel MMPs -21, -26, and -28 were studied in melanoma cell culture, in primary cutaneous melanomas, and their sentinel nodes. The MMP expression profile in keratoacanthomas and well-differentiated squamous cell carcinomas was analyzed to find markers to differentiate benign keratinocyte hyperproliferation from malignantly transformed cells. Squamous cell carcinomas of immunosuppressed organ transplant recipients were compared to squamous cell carcinomas of matched immunocompetent controls to investigate the factors explaining their more aggressive nature. We found that MMP-7 and -19 proteins are abundant in extramammary Paget's disease and that their presence may predict an underlying adenocarcinoma in these patients. In melanomas, MMP-21 was upregulated in early phases of melanoma progression, but disappeared from the more aggressive tumors with lymph node metastases. The presence of MMP-13 in primary melanomas and lymph node metastases may relate to more aggressive disease. In keratoacanthomas, the expression of MMP-7 and -9 is rare and therefore should raise a suspicion of well-differentiated squamous cell carcinomas. Furthermore, MMP-19 and p16 were observed in benign keratinocyte hyperproliferation of keratoacanthomas, whereas they were generally lost from malignant keratinocytes of SCCs. MMP-26 staining was significantly stronger in squamous cell carcinomas and Bowen s disease samples of organ transplant recipients and it may contribute to the more aggressive nature of squamous cell carcinomas in immunosuppressed patients. In addition, the staining for MMP-9 was significantly stronger in macrophages surrounding the tumors of the immunocompetent group and in neutrophils of those patients on cyclosporin medication. In conclusion, based on our studies, MMP-7 and -19 might serve as biomarkers for more aggressive extramammary Paget's disease and MMP-21 for malignant transformation of melanocytes. MMP -7, -9, and -26, however, could play an important role in the pathobiology of keratinocyte derived malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatoid arthritis is the most common of all types of arthritis and despite of intensive research etiology of the disease remains unclear. Distinctive features of rheumatic arthritis comprise continuous inflammation of synovium, in which synovial membrane expands on cartilage leading to pannus tissue formation. Pannus formation, appearance of proteolytic enzymes and osteoclast formation cause articular cartilage and bone destruction, which lead to erosions and permanent joint damage. Proteolytic pathways play major roles in the development of tissue lesions in rheumatoid arthritis. Degradation of extracellular matrix proteins is essential to pannus formation and invasion. Matrix metalloproteinases (MMP) form a large proteolytic enzyme family and in rheumatoid arthritis they contribute to pannus invasion by degrading extracellular matrix and to joint destruction by directly degrading the cartilage. MMP-1 and MMP-3 are shown to be increased during cell invasion and also involved in cartilage destruction. Increase of many cytokines has been observed in rheumatoid arthritis, especially TNF-α and IL-1β are studied in synovial tissue and are involved in rheumatoid inflammation and degradation of cartilage. Underlying bone resorption requires first demineralization of bone matrix with acid secreted by osteoclasts, which exposes the collagen-rich matrix for degradation. Cathepsin K is the best known enzyme involved in bone matrix degradation, however deficiency of this protein in pycnodysostosis patient did not prevent bone erosion and on the contrary pannus tissue invading to bone did not expressed much cathepsin K. These indicate that other proteinases are involved in bone degradation, perhaps also via their capability to replace the role of other enzymes especially in diseases like pycnodysostosis or during medication e.g. using cathepsin K inhibitors. Multinuclear osteoclasts are formed also in pannus tissue, which enable the invasion into underlying bone matrix. Pannus tissue express a receptor activator of nuclear factor kappa B ligand (RANKL), an essential factor for osteoclast differentiation and a disintegrin and a metalloproteinase 8 (ADAM8), an osteoclast-activating factors, involved in formation of osteoclast-like giant cells by promoting fusion of mononuclear precursor cells. The understanding of pannus invasion and degradation of extracellular matrix in rheumatic arthritis will open us new more specific methods to prevent this destructive joint disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielman kirjallisuusosassa perehdyttiin vehnän, rukiin ja ohran, eli Triticeaeprolamiinien erityisasemaan keliakianäkökulmasta tarkasteltuna ja prolamiinien hydrolyysiin proliinispesifeillä entsyymeillä. Lisäksi tarkasteltiin prolamiinien immunologisia määritysmenetelmiä. Keliakiassa haitalliset gluteenipeptidit sisältävät runsaasti proliinia ja ovat hankalia pilkkoa muilla kuin proliinispesifeillä peptidaaseilla. Suurin osa immunologisen reaktion aiheuttavista gluteenilähtöisistä peptideistä voidaan pilkkoa idätetyn viljan endogeenisilla entsyymeillä happamissa olosuhteissa, mutta jäljellejäävä prolamiinipitoisuus ylittää edelleen gluteenittomille tuotteille sallitun rajan. Kokeellisen työn tavoitteena oli eliminoida happamalla mallasinkubaatiolla valmistettujen vehnä-, ohra- ja ruismallasautolysaattien sisältämä jäännösprolamiini Aspergillus niger -homeen tuottamalla proliinispesifillä endopeptidaasilla (AN-PEP) siten, että hydrolysaattia voitaisiin käyttää gluteenittomissa leivontasovelluksissa. Proteiinien hydrolyysiä tarkkailtiin kokoekskluusiokromatografialla (SEC), vapaan aminotypen (FAN) muodostumisena ja SDS-PAGE-elektroforeesilla. Jäännösprolamiinien pilkkoutumista seurattiin immunologisella R5-ELISA-menetelmällä. AN-PEP-inkubaatiolla saatiin aikaan voimakasta prolamiinien pilkkoutumista; mallasautolysaattien jäännösprolamiinista pilkkoutui yli 96 %. SEC- ja FAN-analyysien perusteella inkubaatioaikaa kannatti jatkaa yli 4 h, jolloin polypeptidit pilkkoutuivat edelleen pienemmiksi hydrolyysituotteiksi. Vehnä- ja ruismallashydrolysaattien prolamiinipitoisuuden todettiin laskevan 22 h inkubaation aikana alle tason 100 mg/kg R5-ELISA-menetelmällä määritettynä. Matalimmat prolamiinipitoisuudet saavutettiin AN-PEP-pitoisuudella 35 ?l / g mallasautolysaattia. Codex Alimentarius -komission säädöksen mukaan keliakiaruokavalioon soveltuvat ns. erittäin vähägluteeniset tuotteet saavat sisältää gluteenia enintään 100 mg/kg. Erityisesti AN-PEP-käsiteltyä ruismallasraaka-ainetta voitaisiin mahdollisesti käyttää tuomaan rukiista aromia gluteenittomiin leipiin. Ennen kuin mallashydrolysaatit ovat valmiita kaupallisiin sovelluksiin, on tarkasteltava niiden todellisia mahdollisuuksia parantaa elintarvikkeiden makua ja aromia sekä todettava uuden teknologian turvallisuus keliaakikoille.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän tutkimuksen kirjallisuusosan tavoitteena oli selvittää perinteisen kastikepohjan valmistukseen ja valmistuksen kokonaisvaltaiseen onnistumiseen vaikuttavia seikkoja. Lisäksi käsiteltiin kastikepohjan valmistukseen liittyviä ympäristö- ja energia-asioita, kuten eläinperäisten sivutuotteiden kierrätysmahdollisuuksia. Kokeellisessa osassa tutkimuksen keskeinen lähtökohta oli pyrkiä löytämään ratkaisu ylipainekeittomenetelmään liittyvään kastikepohjan liemiaineksen sameutumisongelmaan. Tutkimuksessa haluttiin löytää syyt sameuden muodostumiseen luiden painekeitossa (max. 1,5 bar). Näin pyrittiin selvittämään keinot sameuden syntymisen estämiseen tai tuotteesta poistamiseen. Ratkaisua etsittiin sekä keittoaika-paine-kombinaatiosta että proteolyyttisen entsyymivalmisteen käytöstä. Tavoitteena oli ulkonäöltään kirkas ja kuiva-ainepitoisuudeltaan mahdollisimman korkea naudanmakuinen demi-glace-kastikepohjaliemi. Liemiaineksista tarkasteltiin kuiva-aine-, kokonaisproteiini- ja sidekudosproteiinipitoisuuksia, pH-arvoja sekä sameutta, ja vertailtiin näitä tuloksia käytettyihin valmistusmenetelmiin ja -olosuhteisiin. Lisäksi otettiin selvää lämmöntalteenoton parantamis-mahdollisuuksista. Tutkimuksessa valmistetun kastikepohjaliemen kuiva-aine koostui pääasiassa proteiineista. Liemen valmistuksessa suuremmalla paineella päästiin hieman nopeammin samoihin kuiva-ainepitoisuuksiin kuin matalammalla paineella. Samoin tapahtui entsyymiä käytettäessä kuin käyttämättä jätettäessä. Tämän tutkimuksen perusteella korkeaa kuiva-ainepitoisuutta tavoiteltaessa kastikepohjaliemen valmistuksessa on valittava korkean sidekudosproteiinin tai sameuden väliltä. Ylipainekeitolla luista saatiin irti lähes pelkästään sidekudosproteiinia, koska luita kuumennettaessa vain kollageeni liukeni veteen muiden proteiinien saostuessa. Lämmöntalteenottojärjestelmien rakentaminen pieneen elintarviketeollisuusyritykseen voi olla kannattamatonta, koska investointikustannuksia ei välttämättä pystytä maksamaan takaisin. Energiatehokkuuden parantaminen pienessä elintarviketeollisuusyrityksessä on haastavaa, mutta kuitenkin mahdollista ammattilaisten tekemien tarkkojen laskelmien ja arviointien avulla.