71 resultados para Primed Search
Resumo:
A large fraction of an XML document typically consists of text data. The XPath query language allows text search via the equal, contains, and starts-with predicates. Such predicates can be efficiently implemented using a compressed self-index of the document's text nodes. Most queries, however, contain some parts querying the text of the document, plus some parts querying the tree structure. It is therefore a challenge to choose an appropriate evaluation order for a given query, which optimally leverages the execution speeds of the text and tree indexes. Here the SXSI system is introduced. It stores the tree structure of an XML document using a bit array of opening and closing brackets plus a sequence of labels, and stores the text nodes of the document using a global compressed self-index. On top of these indexes sits an XPath query engine that is based on tree automata. The engine uses fast counting queries of the text index in order to dynamically determine whether to evaluate top-down or bottom-up with respect to the tree structure. The resulting system has several advantages over existing systems: (1) on pure tree queries (without text search) such as the XPathMark queries, the SXSI system performs on par or better than the fastest known systems MonetDB and Qizx, (2) on queries that use text search, SXSI outperforms the existing systems by 1-3 orders of magnitude (depending on the size of the result set), and (3) with respect to memory consumption, SXSI outperforms all other systems for counting-only queries.
Resumo:
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 inverse fb of integrated luminosity of proton-antiproton collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the observed mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional parameter space of tan beta versus m(A).
Resumo:
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 inverse fb of integrated luminosity of proton-antiproton collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the observed mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional parameter space of tan beta versus m(A).
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We present a search for exclusive Z boson production in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using the CDF II detector at Fermilab. We observe no exclusive Z->ll candidates and place the first upper limit on the exclusive Z cross section in hadron collisions, sigma(exclu) gammagamma->p+ll+pbar, and measure the cross section for M(ll) > 40 GeV/c2 and |eta(l)|
Resumo:
We present a search for associated production of the standard model (SM) Higgs boson and a $Z$ boson where the $Z$ boson decays to two leptons and the Higgs decays to a pair of $b$ quarks in $p\bar{p}$ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ we see no evidence of a Higgs boson with a mass between 100 GeV$/c^2$ and 150 GeV$/c^2$. We set 95% confidence level (C.L.) upper limits on the cross-section for $ZH$ production as a function of the Higgs boson mass $m_H$; the limit is 8.2 times the SM prediction at $m_H = 115$ GeV$/c^2$.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."
Resumo:
A search for new physics using three-lepton (trilepton) data collected with the CDF II detector and corresponding to an integrated luminosity of 976 pb-1 is presented. The standard model predicts a low rate of trilepton events, which makes some supersymmetric processes, such as chargino-neutralino production, measurable in this channel. The mu+mu+l signature is investigated, where l is an electron or a muon, with the additional requirement of large missing transverse energy. In this analysis, the lepton transverse momenta with respect to the beam direction (pT) are as low as 5 GeV/c, a selection that improves the sensitivity to particles which are light as well as to ones which result in leptonically decaying tau leptons. At the same time, this low-p_T selection presents additional challenges due to the non-negligible heavy-quark background at low lepton momenta. This background is measured with an innovative technique using experimental data. Several dimuon and trilepton control regions are investigated, and good agreement between experimental results and standard-model predictions is observed. In the signal region, we observe one three-muon event and expect 0.4+/-0.1 mu+mu+l events
Resumo:
Models of Maximal Flavor Violation (MxFV) in elementary particle physics may contain at least one new scalar SU$(2)$ doublet field $\Phi_{FV} = (\eta^0,\eta^+)$ that couples the first and third generation quarks ($q_1,q_3$) via a Lagrangian term $\mathcal{L}_{FV} = \xi_{13} \Phi_{FV} q_1 q_3$. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb$^{-1}$ collected by the CDF II detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV are analyzed for evidence of the MxFV signature. For a neutral scalar $\eta^0$ with $m_{\eta^0} = 200$ GeV/$c^2$ and coupling $\xi_{13}=1$, $\sim$ 11 signal events are expected over a background of $2.1 \pm 1.8$ events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling $\xi_{13}$ for $m_{\eta^0} = 180-300$ GeV/$c^2$.
Resumo:
We present a search for a Higgs boson decaying to two W bosons in ppbar collisions at sqrt(s)=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb-1 collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c^2, and determine upper limits on the production cross section. For the mass of 160 GeV/c^2, where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.
Resumo:
We present a search for the Higgs boson in the process $q\bar{q} \to ZH \to \ell^+\ell^- b\bar{b}$. The analysis uses an integrated luminosity of 1 fb$^{-1}$ of $p\bar{p}$ collisions produced at $\sqrt{s} =$ 1.96 TeV and accumulated by the upgraded Collider Detector at Fermilab (CDF II). We employ artificial neural networks both to correct jets mismeasured in the calorimeter, and to distinguish the signal kinematic distributions from those of the background. We see no evidence for Higgs boson production, and set 95% CL upper limits on $\sigma_{ZH} \cdot {\cal B}(H \to b\bar{b}$), ranging from 1.5 pb to 1.2 pb for a Higgs boson mass ($m_H$) of 110 to 150 GeV/$c^2$.
Resumo:
We present a search for standard model (SM) Higgs boson production using ppbar collision data at sqrt(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb-1. We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m_H) in the range from 110 to 200 GeV. These limits are the most stringent for m_H > 130 GeV and are 1.29 above the predicted value of sigma(H) for mH = 165 GeV.
Resumo:
We search for b to s\mu^+\mu^- transitions in B meson (B^+, B^0, or B^0_s) decays with 924pb^{-1} of p pbar collisions at sqrt(s)=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We find excesses with significances of 4.5, 2.9, and 2.4 standard deviations in the B^+ to \mu^+\mu^-K^+, B^0 to \mu^+\mu^-K^*(892)^0, and B_s^0 to \mu^+\mu^-\phi decay modes, respectively. Using B to J/psi h (h = K^+, K^*(892)^0, phi) decays as normalization channels, we report branching fractions for the previously observed B^+ and B^0 decays, BR(B^+ to \mu^+\mu^-K^+)=(0.59\pm0.15\pm0.04) x 10^{-6}, and BR(B^0 to \mu^+\mu^-K^*(892)^0)=(0.81\pm0.30\pm0.10) x 10^{-6}, where the first uncertainty is statistical, and the second is systematic. These measurements are consistent with the world average results, and are competitive with the best available measurements. We set an upper limit on the relative branching fraction BR(B_s^0 to \mu^+\mu^-\phi)/BR(B_s^0 to J/\psi\phi)
Resumo:
We report on a search for direct scalar bottom quark (sbottom) pair production in $p \bar{p}$ collisions at $\sqrt{s}=1.96$~TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a $b$ quark. The study uses a CDF Run~II data sample corresponding to 2.65~fb${}^{-1}$ of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95$\%$ confidence-level upper limits on the sbottom pair production cross section of 0.1~pb are obtained. For neutralino masses below 70~GeV/$c^2$, sbottom masses up to 230~GeV/$c^2$ are excluded at 95$\%$ confidence level.