17 resultados para Needle bearings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter <= 10 mm (twigs) and FWD with diameter > 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accompanying collective research report is the result of the research project in 1986­90 between The Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results. Annual cycle affects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. Linking the theoretical model with long term temperature data allowed us to analyze what type of temperature response produced favorable outcome in different climates. Initiation of growth consumes the carbohydrate reserves in plants. We measured the dynamics of insoluble and soluble sugars in the very northern and Karelian conditions. Clear cyclical pattern was observed but the differences between locations were surprisingly small. Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The effect of other factors is so small that they can be omitted without any considerable loss of accuracy. A special experiment carried out in Hyytiälä showed that the needle living space, defined as the ratio between the shoot cylindric volume and needle surface area, correlates with the shoot photosynthesis. The penetration of irradiance into Scots pine canopy is a complicated phenomenon because of the movement of the sun on the sky and the complicated structure of branches and needles. A moderately simple but balanced forest radiation regime submodel was constructed. It consists of the tree crown and forest structure, the gap probability calculation and the consideration of spatial and temporal variation of radiation inside the forest. The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structures. The water transport seems to be a good common factor to analyse these properties of tree structure. There are evident regressions between cross-sectional areas measured at different locations along the water pathway from fine roots to needles. The observed regressions have clear geographical trends. For example, the same cross-sectional area can support three times higher needle mass in South Russia than in Lapland. Geographical trends can also be seen in shoot and needle structure. Analysis of data published by several Russian authors show, that one ton of needles transpire 42 ton of water a year. This annual amount of transpiration seems to be independent of geographical location, year and site conditions. The produced theoretical and experimental material is utilised in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed for growth and maintenance and nutrients are taken according to the metabolic needs. The annual photosynthetic production by trees in the stand is determined as a function of irradiance and shading during the active period. The utilisation of the annual photosynthetic production to the growth of different components of trees is based on structural regularities. Since the fundamental metabolic processes are the same in all locations the same growth model structure can be applied in the large range of Scots pine. The annual photosynthetic production and structural regularities determining the allocation of resources have geographical features. The common field measurements enable the application of the model to the analysis of growth and development of stands growing on the five locations of experiments. The model enables the analysis of geographical differences in the growth of Scots pine. For example, the annual photosynthetic production of a 100-year-old stand at Voronez is 3.5 times higher than in Lapland. The share consumed to needle growth (30 %) and to growth of branches (5 %) seems to be the same in all locations. In contrast, the share of fine roots is decreasing when moving from north to south. It is 20 % in Lapland, 15 % in Hyytiälä Central Finland and Kentjärvi Karelia and 15 % in Voronez South Russia. The stem masses (115­113 ton/ha) are rather similar in Hyytiälä, Kentjärvi and Voronez, but rather low (50 ton/ha) in Lapland. In Voronez the height of the trees reach 29 m being in Hyytiälä and Kentjärvi 22 m and in Lapland only 14 m. The present approach enables utilization of structural and functional knowledge, gained in places of intensive research, in the analysis of growth and development of any stand. This opens new possibilities for growth research and also for applications in forestry practice.