23 resultados para Mean field theory
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.
Resumo:
In this thesis I examine one commonly used class of methods for the analytic approximation of cellular automata, the so-called local cluster approximations. This class subsumes the well known mean-field and pair approximations, as well as higher order generalizations of these. While a straightforward method known as Bayesian extension exists for constructing cluster approximations of arbitrary order on one-dimensional lattices (and certain other cases), for higher-dimensional systems the construction of approximations beyond the pair level becomes more complicated due to the presence of loops. In this thesis I describe the one-dimensional construction as well as a number of approximations suggested for higher-dimensional lattices, comparing them against a number of consistency criteria that such approximations could be expected to satisfy. I also outline a general variational principle for constructing consistent cluster approximations of arbitrary order with minimal bias, and show that the one-dimensional construction indeed satisfies this principle. Finally, I apply this variational principle to derive a novel consistent expression for symmetric three cell cluster frequencies as estimated from pair frequencies, and use this expression to construct a quantitatively improved pair approximation of the well-known lattice contact process on a hexagonal lattice.
Resumo:
Tässä tutkielmassa tarkastelen soluautomaatteja ja niiden yleisesti käytettyj ä keskivertokenttä- ("mean field") ja pariapproksimaatioita. Määrittelen soluautomaatin käsitteen yleisellä tasolla ja kuvailen kolme eri tyypillisesti käytettyä soluautomaattityyppiä, joista kahdesta esimerkkeinä mainitsen John Conwayn tunnetun "Game of Life" -soluautomaatin sekä epidemiologian alalla yleisesti käytetyn hilakontaktiprosessin. Tutkielman toisessa osassa esittelen eri tapoja, joilla soluautomaattien käyttäytymistä voidaan analyyttisesti approksimoida ja karakterisoida, mukaanlukien niin kutsuttu soluautomaatin aktiviteetti (λ) sekä yllämainitut keskivertokenttä- ja pariapproksimaatiot. Kahta jälkimmäistä sovellan hilakontaktiprosessiin, ja vertailen näin saatuja tuloksia.
Resumo:
Earlier work has suggested that large-scale dynamos can reach and maintain equipartition field strengths on a dynamical time scale only if magnetic helicity of the fluctuating field can be shed from the domain through open boundaries. To test this scenario in convection-driven dynamos by comparing results for open and closed boundary conditions. Three-dimensional numerical simulations of turbulent compressible convection with shear and rotation are used to study the effects of boundary conditions on the excitation and saturation level of large-scale dynamos. Open (vertical field) and closed (perfect conductor) boundary conditions are used for the magnetic field. The contours of shear are vertical, crossing the outer surface, and are thus ideally suited for driving a shear-induced magnetic helicity flux. We find that for given shear and rotation rate, the growth rate of the magnetic field is larger if open boundary conditions are used. The growth rate first increases for small magnetic Reynolds number, Rm, but then levels off at an approximately constant value for intermediate values of Rm. For large enough Rm, a small-scale dynamo is excited and the growth rate in this regime increases proportional to Rm^(1/2). In the nonlinear regime, the saturation level of the energy of the mean magnetic field is independent of Rm when open boundaries are used. In the case of perfect conductor boundaries, the saturation level first increases as a function of Rm, but then decreases proportional to Rm^(-1) for Rm > 30, indicative of catastrophic quenching. These results suggest that the shear-induced magnetic helicity flux is efficient in alleviating catastrophic quenching when open boundaries are used. The horizontally averaged mean field is still weakly decreasing as a function of Rm even for open boundaries.
Resumo:
We compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.
Resumo:
Superfluidity is perhaps one of the most remarkable observed macroscopic quantum effect. Superfluidity appears when a macroscopic number of particles occupies a single quantum state. Using modern experimental techniques one dark solitons) and vortices. There is a large literature on theoretical work studying the properties of such solitons using semiclassical methods. This thesis describes an alternative method for the study of superfluid solitons. The method used here is a holographic duality between a class of quantum field theories and gravitational theories. The classical limit of the gravitational system maps into a strong coupling limit of the quantum field theory. We use a holographic model of superfluidity to study solitons in these systems. One particularly appealing feature of this technique is that it allows us to take into account finite temperature effects in a large range of temperatures.
Resumo:
Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.