20 resultados para METEOROLOGIA COM SATÉLITE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoscale weather phenomena, such as the sea breeze circulation or lake effect snow bands, are typically too large to be observed at one point, yet too small to be caught in a traditional network of weather stations. Hence, the weather radar is one of the best tools for observing, analyzing and understanding their behavior and development. A weather radar network is a complex system, which has many structural and technical features to be tuned, from the location of each radar to the number of pulses averaged in the signal processing. These design parameters have no universal optimal values, but their selection depends on the nature of the weather phenomena to be monitored as well as on the applications for which the data will be used. The priorities and critical values are different for forest fire forecasting, aviation weather service or the planning of snow ploughing, to name a few radar-based applications. The main objective of the work performed within this thesis has been to combine knowledge of technical properties of the radar systems and our understanding of weather conditions in order to produce better applications able to efficiently support decision making in service duties for modern society related to weather and safety in northern conditions. When a new application is developed, it must be tested against ground truth . Two new verification approaches for radar-based hail estimates are introduced in this thesis. For mesoscale applications, finding the representative reference can be challenging since these phenomena are by definition difficult to catch with surface observations. Hence, almost any valuable information, which can be distilled from unconventional data sources such as newspapers and holiday shots is welcome. However, as important as getting data is to obtain estimates of data quality, and to judge to what extent the two disparate information sources can be compared. The presented new applications do not rely on radar data alone, but ingest information from auxiliary sources such as temperature fields. The author concludes that in the future the radar will continue to be a key source of data and information especially when used together in an effective way with other meteorological data.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thunderstorm is a dangerous electrical phenomena in the atmosphere. Thundercloud is formed when thermal energy is transported rapidly upwards in convective updraughts. Electrification occurs in the collisions of cloud particles in the strong updraught. When the amount of charge in the cloud is large enough, electrical breakdown, better known as a flash, occurs. Lightning location is nowadays an essential tool for the detection of severe weather. Located flashes indicate in real time the movement of hazardous areas and the intensity of lightning activity. Also, an estimate for the flash peak current can be determined. The observations can be used in damage surveys. The most simple way to represent lightning data is to plot the locations on a map, but the data can be processed in more complex end-products and exploited in data fusion. Lightning data serves as an important tool also in the research of lightning-related phenomena, such as Transient Luminous Events. Most of the global thunderstorms occur in areas with plenty of heat, moisture and tropospheric instability, for example in the tropical land areas. In higher latitudes like in Finland, the thunderstorm season is practically restricted to the summer season. Particular feature of the high-latitude climatology is the large annual variation, which regards also thunderstorms. Knowing the performance of any measuring device is important because it affects the accuracy of the end-products. In lightning location systems, the detection efficiency means the ratio between located and actually occurred flashes. Because in practice it is impossible to know the true number of actually occurred flashes, the detection efficiency has to be esimated with theoretical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: On the hydrometeorological factors affecting irrigation