41 resultados para Linear Matrix Inequalities (LMIs)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) represent a family of 23 metalloendopeptidases, collectively capable of degrading all components of the extracellular matrix. MMPs have been implicated in several inflammatory processes such as arthritis, atherosclerosis, and even carcinomas. They are also involved in several beneficial activities such as epithelial repair. MMPs are inhibited by endogenous tissue inhibitors of matrix metalloproteinases (TIMP). In this study, MMPs were investigated in intestinal mucosa of inflammatory bowel diseases (IBD), chronic intestinal disorders. The main focus was to characterize mucosal inflammation in the intestine, but also cutaneous pyoderma gangrenosum (PG), to assess similarites with IBD inflammation. MMPs and TIMPs were mainly examined in colonic mucosa, in adult Crohn s disease (CD), and paediatric CD, ulcerative colitis (UC), and indeterminate colitis (IC). Ileal pouch mucosa of proctocolectomized paediatric onset IBD patients was also investigated to characterize pouch mucosa. The focus was on finding specific MMPs that could act as markers to differentiate between different IBD disorders, and MMPs that could be implied as markers for tissue injury, potentially serving as targets for MMP-inhibitors. All examinations were performed using immunohistochemistry. The results show that immunosuppressive agents decrease stromal expression of MMP-9 and -26 that could serve as specific targets for MMP-inhibitors in treating CD. In paediatric colonic inflammation, MMP-10 and TIMP-3 present as molecular markers for IBD inflammation, and MMP-7 for CD. MMP expression in the the pouch mucosa could not be classified as strictly IBD- or non-IBD-like. For the first time, this study describes the expression of MMP-3, -7, -9, -12, and TIMP-2 and -3 in pouch mucosa. The MMP profile in PG bears resemblance to both intestinal IBD inflammation and cutaneous inflammation. Based on the results, MMPs and their inhibitors emerge as promising tools in the differential diagnosis of IBD and characterization of the disease subtype, although further research is necessary. Furthermore, the expression of several MMPs in pouch has been described for the first time. While further research is warranted, the findings contribute to a better understanding of events occurring in IBD mucosa, as well as pyoderma gangrenosum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of non-melanoma skin cancer is increasing worldwide. Basal cell carcinoma followed by squamous cell carcinoma and malignant melanoma are the most frequent skin tumors. Immunosuppressed patients have an increased risk of neoplasia, of which non-melanoma skin cancer is the most common. Matrix metalloproteinases (MMPs) are proteolytic enzymes that collectively are capable of degrading virtually all components of the extracellular matrix. MMPs can also process substrates distinct from extracellular matrix proteins and influence cell proliferation, differentiation, angiogenesis, and apoptosis. MMP activity is regulated by their natural inhibitors, tissue inhibitors of metallopro-teinases (TIMPs). In this study, the expression patterns of MMPs, TIMPs, and certain cancer-related molecules were investigated in premalignant and malignant lesions of the human skin. As methods were used immunohistochemisty, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR) from the cell cultures. Our aim was to evaluate the expression pattern of MMPs in extramammary Paget's disease in order to find markers for more advanced tumors, as well as to shed light on the origin of this rare neoplasm. Novel MMPs -21, -26, and -28 were studied in melanoma cell culture, in primary cutaneous melanomas, and their sentinel nodes. The MMP expression profile in keratoacanthomas and well-differentiated squamous cell carcinomas was analyzed to find markers to differentiate benign keratinocyte hyperproliferation from malignantly transformed cells. Squamous cell carcinomas of immunosuppressed organ transplant recipients were compared to squamous cell carcinomas of matched immunocompetent controls to investigate the factors explaining their more aggressive nature. We found that MMP-7 and -19 proteins are abundant in extramammary Paget's disease and that their presence may predict an underlying adenocarcinoma in these patients. In melanomas, MMP-21 was upregulated in early phases of melanoma progression, but disappeared from the more aggressive tumors with lymph node metastases. The presence of MMP-13 in primary melanomas and lymph node metastases may relate to more aggressive disease. In keratoacanthomas, the expression of MMP-7 and -9 is rare and therefore should raise a suspicion of well-differentiated squamous cell carcinomas. Furthermore, MMP-19 and p16 were observed in benign keratinocyte hyperproliferation of keratoacanthomas, whereas they were generally lost from malignant keratinocytes of SCCs. MMP-26 staining was significantly stronger in squamous cell carcinomas and Bowen s disease samples of organ transplant recipients and it may contribute to the more aggressive nature of squamous cell carcinomas in immunosuppressed patients. In addition, the staining for MMP-9 was significantly stronger in macrophages surrounding the tumors of the immunocompetent group and in neutrophils of those patients on cyclosporin medication. In conclusion, based on our studies, MMP-7 and -19 might serve as biomarkers for more aggressive extramammary Paget's disease and MMP-21 for malignant transformation of melanocytes. MMP -7, -9, and -26, however, could play an important role in the pathobiology of keratinocyte derived malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was twofold- Firstly, to determine the composition of the type IV collagen which are the major components of the basement membrane (BM), in the synovial lining of the rheumatoid arthritis (RA) patient and in the BM in the labial salivary gland of the Sjögrens syndrome (SS) patient. Secondly, this thesis aimed to investigate the role of the BM component laminin α4 and laminin α5 in the migration of neutrophils from the blood vessels thorough the synovial lining layer into synovial fluid and the presence of vWF in the microvasculature of labial salivary gland in SS. Our studies showed that certain α chains type IV collagen are low in RA compared to control synovial linings, while laminin α5 exhibited a pattern of low expression regions at the synovial lining interface towards the joint cavity and fluid. Also, high numbers of macrophage-like lining cells containing MMP-9 were found in the lining. MMP-9 was also found in the synovial fluid. Collagen α1/2 (IV) mRNA was found to be present in high amount compared to the other α(IV) chains and also showed intense labelling in immunohistochemical staining in normal and SS patients. In healthy glands α5(IV) and α6(IV) chains were found to be continuous around ducts but discontinuous around acini. The α5(IV) and α6(IV) mRNAs were present in LSG explants and HSG cell line, while in SS these chains seemed to be absent or appear only in patches around the ductal BM and tended to be absent around acini in immunohistochemical staining, indicating that their synthesis and/or degradation seemed to be locally regulated around acinar cells. The provisional matrix component vWF serves as a marker of vascular damage. Microvasculature in SS showed signs of focal damage which in turn might impair arteriolar feeding, capillary transudation and venular drainage of blood. However, capillary density was not decreased but rather increased, perhaps as a result of angiogenesis compensatory to microvascular damage. Microvascular involvement of LSG may contribute to the pathogenesis of this syndrome. This twofold approach allows us to understand the intricate relation between the ECM components and the immunopathological changes that occur during the pathogenesis of these inflammatory rheumatic disease processes. Also notably this study highlights the importance of maintaining a healthy ECM to prevent the progression or possibly allow reversal of the disease to a considerable level. Furthermore, it can be speculated that a healthy BM could quarantine the inflamed region or in case of cancer cells barricade the movement of malignant cells thereby preventing further spread to the surrounding areas. This understanding can be further applied to design appropriate drugs which act specifically to maintain a proper BM/BM like intercellular matrix composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation, excess production and release of matrix proteinases, including matrix metalloproteinases (MMPs) and serine proteinases, may result in dysregulated extracellular proteolysis leading to development of tissue damage. Pulmonary inflammation may play an important role in the pathogenesis of lung injury in the preterm infant. The aims of this study were to evaluate involvement of MMPs and serine proteinase trypsin in acute and chronic lung injury in preterm infants and to study the role of these enzymes in acute lung injury by means of an animal model of hyperoxic lung injury. Molecular forms and levels of MMP-2, -8, and -9, and their specific inhibitor, tissue inhibitor of metalloproteinases (TIMP)-2, as well as trypsin were studied in tracheal aspirate fluid (TAF) samples collected from preterm infants with respiratory distress. Expression and distribution of trypsin-2 and proteinase-activated receptor 2 (PAR2) was examined in autopsy lung specimens from fetuses, from preterm infants with respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD), and from newborn infants without lung injury. We detected higher MMP-8 and trypsin-2 and lower TIMP-2 in TAF from preterm infants with more severe acute respiratory distress. Infants subsequently developing BPD had higher levels of MMP-8 and trypsin-2 early postnatally than did those who survived without this chronic lung injury. Immunohistochemically, trypsin-2 was mainly detectable in bronchial epithelium, but also in alveolar epithelium, and its expression was strongest in prolonged RDS. Since trypsin-2 is potent activator of PAR2, a G-protein coupled receptor involved in inflammation, we studied PAR2 expression in the lung. PAR2 co-localized with trypsin-2 in bronchoalveolar epithelium and its expression was significantly higher in bronchoalveolar epithelium in preterm infants with prolonged RDS than in newborn controls. In the experimental study, rats were exposed to >95% oxygen for 24, 48, and 60 hours, or room air. At 48 hours of hyperoxia, MMP-8 and trypsin levels sharply increased in bronchoalveolar lavage fluid, and expression of trypsin appeared in alveolar epithelium, and MMP-8 predominantly in macrophages. In conclusion, high pulmonary MMP-8 and trypsin-2 early postnatally are associated with severity of acute lung injury and subsequent development of BPD in preterm infants. In the injured preterm lung, trypsin-2 co-localizes with PAR2 in bronchoalveolar epithelium, suggesting that PAR2 activated by high levels of trypsin-2 is involved in lung inflammation associated with development of BPD. Marked increase in MMP-8 and trypsin early in the course of experimental hyperoxic lung injury suggests that these enzymes play a role in the pathogenesis of acute lung injury. Further exploration of the roles of trypsin and MMP-8 in lung injury may offer new targets for therapeutic intervention.