20 resultados para Limit Cycle
Resumo:
Climate is warming and it is especially seen in arctic areas, where the warming trend is expected to be greatest. Arctic freshwater ecosystems, which are a very characteristic feature of the arctic landscape, are especially sensitive to climate change. They could be used as early warning systems, but more information about the ecosystem functioning and responses are needed for proper interpretation of the observations. Phytoplankton species and assemblages could be especially suitable for climate-related studies, since they have short generation times and react rapidly to changes in the environment. In addition, phytoplankton provides a good tool for lake classifications, since different species have different requirements and tolerance ranges for various environmental factors. The use of biological indicators is especially useful in arctic areas, were many of the chemical factors commonly fall under the detection limit and therefore do not provide much information about the environment. This work brings new information about species distribution and dynamics of arctic freshwater phytoplankton in relation to environmental factors. The phytoplankton of lakes in Finnish Lapland and other European high-altitude or high-latitude areas were compared. Most lakes were oligotrophic and dominated by flagellated species belonging to chrysophytes, cryptophytes and dinoflagellates. In Finnish Lapland cryptophytes were of less importance, whereas desmids had high species richness in many of the lakes. In Pan-European scale, geographical and catchment-related factors were explaining most of the differences in species distributions between different districts, whereas lake water chemistry (especially conductivity, SiO2 and pH) was most important regionally. Seasonal and interannual variation of phytoplankton was studied in subarctic Lake Saanajärvi. Characteristic phytoplankton species in this oligotrophic, dimictic lake belonged mainly to chrysophytes and diatoms. The maximum phytoplankton biomass in Lake Saanajärvi occurs during autumn, while spring biomass is very low. During years with heavy snow cover the lake suffers from pH drop caused by melt waters, but the effects of this acid pulse are restricted to surface layers and last for a relatively short period. In addition to some chemical parameters (mainly Ca and nutrients), length of the mixing cycle and physical factors such as lake water temperature and thermal stability of water column had major impact on phytoplankton dynamics. During a year with long and strong thermal stability, the phytoplankton community developed towards an equilibrium state, with heavy dominance of only a few taxa for a longer period of time. During a year with higher windiness and less thermal stability, the species composition was more diverse and species with different functional strategies were able to occur simultaneously. The results of this work indicate that although arctic lakes in general share many common features concerning their catchment and water chemistry, large differences in biological features can be found even in a relatively small area. Most likely the lakes with very different algal flora do not respond in a similar way to differences in the environmental factors, and more information about specific arctic lake types is needed. The results also show considerable year to year differences in phytoplankton species distribution and dynamics, and these changes are most likely linked to climatic factors.
Resumo:
The endoplasmic reticulum (ER) and the Golgi apparatus are organelles that produce, modify and transport proteins and lipids and regulate Ca2+ environment within cells. Structurally they are composed of sheets and tubules. Sheets may take various forms: intact, fenestrated, single or stacked. The ER, including the nuclear envelope, is a single continuous network, while the Golgi shows only some level of connectivity. It is often unclear, how different morphologies correspond to particular functions. Previous studies indicate that the structures of the ER and Golgi are dynamic and regulated by fusion and fission events, cytoskeleton, rate of protein synthesis and secretion, and specific structural proteins. For example, many structural proteins shaping tubular ER have been identified, but sheet formation is much more unclear. In this study, we used light and electron microscopy to study morphological changes of the ER and Golgi in mammalian cells. The proportion, type, location and dynamics of ER sheets and tubules were found to vary in a cell type or cell cycle stage dependent manner. During interphase, ER and Golgi structures were demonstrated to be regulated by p37, a cofactor of the fusion factor p97, and microtubules, which also affected the localization of the organelles. Like previously shown for the Golgi, the ER displayed a tendency for fenestration and tubulation during mitosis. However, this shape change did not result in ER fragmentation as happens to Golgi, but a continuous network was retained. The activity of p97/p37 was found to be important for the reassembly of both organelles after mitosis. In EM images, ER sheet membranes appear rough, since they contain attached ribosomes, whereas tubular membranes appear smooth. Our studies revealed that structural changes of the ER towards fenestrated and tubular direction correlate with loss of ER-bound ribosomes and vice versa. High and low curvature ER membranes have a low and high density of ribosomes, respectively. To conclude, both ER and Golgi architecture depend on fusion activity of p97/p37. ER morphogenesis, particularly of the sheet shape, is intimately linked to the density of membrane bound ribosomes.
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
Human activities extract and displace different substances and materials from the earth s crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper I). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle assessment (LCA) (Papers II and III) and hybrid LCA, which combines both process and input-output LCA (Paper IV). The results showed that the environmental impacts caused by the extraction and processing of the materials and the energy used by the symbiosis were considerable. If only the direct emissions and resource use of the symbiosis had been considered, less than half of the total environmental impacts of the system would have been taken into account. When the results were compared with the counterfactual reference scenarios, the net environmental impacts of the symbiosis were smaller than those of the reference scenarios. The reduction in environmental impacts was mainly due to changes in the way energy was produced. However, the results are sensitive to the way the reference scenarios are defined. LCA is a useful tool for assessing the overall environmental performance of industrial symbioses. It is recommended that in addition to the direct effects, the upstream impacts should be taken into account as well when assessing the environmental performance of industrial symbioses. Industrial symbiosis should be seen as part of the process of improving the environmental performance of a system. In some cases, it may be more efficient, from an environmental point of view, to focus on supply chain management instead.
Resumo:
Background: Endemic northern malaria reached 68°N latitude in Europe during the 19th century, where the summer mean temperature only irregularly exceeded 16°C, the lower limit needed for sporogony of Plasmodium vivax. Because of the available historical material and little use of quinine, Finland was suitable for an analysis of endemic malaria and temperature. Methods: Annual malaria death frequencies during 1800–1870 extracted from parish records were analysed against long-term temperature records in Finland, Russia and Sweden. Supporting data from 1750–1799 were used in the interpretation of the results. The life cycle and behaviour of the anopheline mosquitoes were interpreted according to the literature. Results: Malaria frequencies correlated strongly with the mean temperature of June and July of the preceding summer, corresponding to larval development of the vector. Hatching of imagoes peaks in the middle of August, when the temperature most years is too low for the sporogony of Plasmodium. After mating some of the females hibernate in human dwellings. If the female gets gametocytes from infective humans, the development of Plasmodium can only continue indoors, in heated buildings. Conclusion: Northern malaria existed in a cold climate by means of summer dormancy of hypnozoites in humans and indoor transmission of sporozoites throughout the winter by semiactive hibernating mosquitoes. Variable climatic conditions did not affect this relationship. The epidemics, however, were regulated by the population size of the mosquitoes which, in turn, ultimately was controlled by the temperatures of the preceding summer.