18 resultados para ISO 9000 Series Standars
Resumo:
In this thesis, I study the changing ladscape and human environment of the Mätäjoki Valley, West-Helsinki, using reconstructions and predictive modelling. The study is a part of a larger project funded by the city of Helsinki aming to map the past of the Mätäjoki Valley. The changes in landscape from an archipelago in the Ancylus Lake to a river valley are studied from 10000 to 2000 years ago. Alongside shore displacement, we look at the changing environment from human perspective and predict the location of dwelling sitesat various times. As a result, two map series were produced that show how the landscape changed and where inhabitance is predicted. To back them up, we have also looked at what previous research says about the history of the waterways, climate, vegetation and archaeology. The changing landscape of the river valley is reconstructed using GIS methods. For this purpose, new laser point data set was used and at the same time tested in the context landscape modelling. Dwelling sites were modeled with logistic regression analysis. The spatial predictive model combines data on the locations of the known dwelling sites, environmental factors and shore displacement data. The predictions were visualised into raster maps that show the predictions for inhabitance 3000 and 5000 years ago. The aim of these maps was to help archaeologists map potential spots for human activity. The produced landscape reconstructions clarified previous shore displacement studies of the Mätäjoki region and provided new information on the location of shoreline. From the shore displacement history of the Mätäjoki Valley arise the following stages: 1. The northernmost hills of the Mätäjoki Valley rose from Ancylus Lake approximately 10000 years ago. Shore displacement was fast during the following thousand years. 2. The area was an archipelago with a relatively steady shoreline 9000 7000 years ago. 8000 years ago the shoreline drew back in the middle and southern parts of the river valley because of the transgression of the Litorina Sea. 3. Mätäjoki was a sheltered bay of the Litorina Sea 6000 5000 years ago. The Vantaanjoki River started to flow into the Mätäjoki Valley approximately 5000 years ago. 4. The sediment plains in the southern part of the river valley rose from the sea rather quickly 5000 3000 years ago. Salt water still pushed its way into the southermost part of the valley 4000 years ago. 5. The shoreline proceeded to Pitäjänmäki rapids where it stayed at least a thousand years 3000 2000 years ago. The predictive models managed to predict the locations of dwelling sites moderately well. The most accurate predictions were found on the eastern shore and Malminkartano area. Of the environment variables sand and aspect of slope were found to have the best predictive power. From the results of this study we can conclude that the Mätäjoki Valley has been a favorable location to live especially 6000 5000 years ago when the climate was mild and vegetation lush. The laser point data set used here works best in shore displacement studies located in rural areas or if further specific palaeogeographic or hydrologic analysis in the research area is not needed.
Resumo:
Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.