21 resultados para Human response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception. Methodology/Principal Findings Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed. Conclusions/Significance Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity and host defence are rapidly evoked by structurally invariant molecular motifs common to microbial world, called pathogen associated molecular patterns (PAMPs). In addition to PAMPs, endogenous molecules released in response to inflammation and tissue damage, danger associated molecular patterns (DAMPs), are required for eliciting the response. The most important PAMPs of viruses are viral nucleic acids, their genome or its replication intermediates, whereas the identity and characteristics of virus infection-induced DAMPs are poorly defined. PAMPs and DAMPs engage a limited set of germ-line encoded pattern recognition receptors (PRRs) in immune and non-immune cells. Membrane-bound Toll-like receptors (TLRs), cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptor (NLRs) are important PRRs involved in the recognition of the molecular signatures of viral infection, such as double-stranded ribonucleic acids (dsRNAs). Engagement of PRRs results in local and systemic innate immune responses which, when activated against viruses, evoke secretion of antiviral and pro-inflammatory cytokines, and programmed cell death i.e., apoptosis of the virus-infected cell. Macrophages are the central effector cells of innate immunity. They produce significant amounts of antiviral cytokines, called interferons (IFNs), and pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. IL-1β and IL-18 are synthesized as inactive precursors, pro-IL-1β and pro-IL-18, that are processed by caspase-1 in a cytoplasmic multiprotein complex, called the inflammasome. After processing, these cytokines are biologically active and will be secreted. The signals and secretory routes that activate inflammasomes and the secretion of IL-1β and IL-18 during virus infections are poorly characterized. The main goal of this thesis was to characterize influenza A virus-induced innate immune responses and host-virus interactions in human primary macrophages during an infection. Methodologically, various techniques of cellular and molecular biology, as well as proteomic tools combined with bioinformatics, were utilized. Overall, the thesis provides interesting insights into inflammatory and antiviral innate immune responses, and has characterized host-virus interactions during influenza A virus-infection in human primary macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are the most common bacteria isolated in bovine subclinical mastitis in many countries, and also a frequent cause of clinical mastitis. The most common species isolated are Staphylococcus (S) chromogenes, S. simulans, S. epidermidis, and S. xylosus. One half of the intramammary infections (IMI) caused by CNS persist in the udder. The pathogenesis of IMI caused by CNS is poorly understood. This dissertation focuses on host response in experimental intramammary infection induced by S. chromogenes, S. epidermidis and S. simulans. Model for a mild experimental CNS infection was developed with S. chromogenes (study I). All cows were infected and most developed subclinical mastitis. In study II the innate immune response to S. epidermidis and S. simulans IMI was compared in eight cows using a crossover design. A larger dose of bacteria was used to induce clinical mastitis. All cows became infected and showed mild to moderate clinical signs of mastitis. S. simulans caused a slightly stronger innate immune response than S. epidermidis, with significantly higher concentrations of the interleukins IL-1beta and IL-8 in the milk. The spontaneous elimination rate of the 16 IMIs was 31%, with no difference between species. No significant differences were recorded between infections eliminated spontaneously or remaining persistent, although the response was stronger in IMIs eliminated spontaneously, except the concentration of TNF-α, which remained elevated in persistent infections. Lactoferrin (Lf) is a component of the humoral defence of the host and is present at low concentrations in the milk. The concentration of Lf in milk is high during the dry period, in colostrum, and in mastitic milk. The effect of an inherent, high concentration of Lf in the milk on experimental IMI induced with S. chromogenes was studied in transgenic cows that expressed recombinant human Lf in their milk. Human Lf did not prevent S. chromogenes IMI, but the host response was milder in transgenic cows than in normal cows, and the former eliminated infection faster. Biofilm production has been suggested to promote persistence of IMI. Phenotypic biofilm formation and slime producing ability of CNS isolates from bovine mastitis was investigated in vitro. One-third of mastitis isolates produced biofilm. Slime production was less frequent for isolates of the most common mastitis causing species S. chromogenes and S. simulans compared with S. epidermidis. No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was associated with persistent infections, but only 8% of isolates produced slime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.